notes - MAT1300 Notes By Eric Hua Contents Chapter 0. A...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAT1300 Notes By Eric Hua Contents Chapter 0. A Precalculus Review 3 Chapter 1. Functions, Graphs, and Limits 6 1.1 The Cartesian Plane and Distance Formula . . 6 1.2 Graphs of Equation . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Lines in the plane and slope . . . . . . . . . . . . . . . . 8 1.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 2. Differentiation 14 2.1 The derivative and the slope of a graph . . . . . . 14 2.2 Some Rules for differentiation . . . . . . . . . . . . . . . 16 2.3 Rates of Change: Velocity and Marginals . . . . 18 2.4 The product and Quotient rules . . . . . . . . . . . . 20 2.5 The chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 Higher derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7 Implicit differentiation . . . . . . . . . . . . . . . . . . . . . 23 Chapter 3. Applications of the Derivative 24 3.1 Increasing and Decreasing Functions . . . . . . . . . 24 3.2 Extrema and the First-Derivative Test . . . . . . . 25 3.3 Concavity and Second-Derivative Test . . . . . . . 26 3.4 Optimization Problems . . . . . . . . . . . . . . . . . . . . . 28 3.5 Business and Economics Applications . . . . . . . . 30 3.6 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.7 Curve Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 Chapter 4. Exponential and Logarithmic functions 34 4.1 Exponential functions . . . . . . . . . . . . . . . . . . . . . 34 4.2 Natural Exponential function . . . . . . . . . . . . . . . 35 4.3 Derivatives of Exponential Functions . . . . . . . . 36 4.4 Logarithmic functions . . . . . . . . . . . . . . . . . . . . . . 36 4.5 Derivatives of Logarithmic Functions . . . . . . . . 37 4.6 Exponential Growth and Decay . . . . . . . . . . . . . 38 Chapter 5. Integration and its Applications 40 5.1 Antiderivatives and Indefinite Integral . . . . . . . 40 5.2 Integration by Substitution and the General Power Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3 Integral of Exponential and Logarithm . . . . . . . 42 5.4 Area and Fundamental Theorem of calculus . . 44 5.5 Area between two Graphs . . . . . . . . . . . . . . . . . . 46 Chapter 6. Techniques of Integration 49 6.1 Integration By Parts and Present Value . . . . . . 49 6.5 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 50 Chapter 7. Functions of Several Variables 52 7.1 The 3D Coordinate System . . . . . . . . . . . . . . . . . 52 7.2 Surfaces in Space (only first 2 pages) . . . . . . . . 52 7.3 Functions of Several Variables . . . . . . . . . . . . . . . 53 7.4 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.5 Extrema of Functions of Two Variables . . . . . . 55 2 Chapter 0. A Precalculus ReviewChapter 0....
View Full Document

Page1 / 56

notes - MAT1300 Notes By Eric Hua Contents Chapter 0. A...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online