{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lecture11

# Lecture11 - FriFeb4,2011 Lecture11...

This preview shows pages 1–3. Sign up to view the full content.

1/26/11 1 PHYS 360 Quantum Mechanics Fri Feb 4, 2011 Lecture 11: The infinite square well: What can we do with a complete set of wave funcJons? 2 2 m d 2 ψ n dx 2 + V ψ n = E n ψ n The Jme‐independent Schrödinger equaJon: Inside infinite square well V=0, so: 2 2 m d 2 ψ n dx 2 = E n ψ n d 2 ψ n dx 2 = k n 2 ψ n , k n 2 = 2 mE n 2 Which of these are valid eigenfuncJons? 1. A sin( k n x ) 2. B cos( k n x ) 3. A sin( k n x ) + B cos( k n x ) 4. Dexp i k n x + θ ( ) 5. all of the above N.b. e i θ = cos θ + i sin θ The equaJon for the Jme‐dependence of the wavefuncJon: i 1 ϕ n d ϕ n dt = E n d ϕ n dt = iE n ϕ n Which of these are valid eigenfuncJons? 1. exp iE n t / [ ] 2. cos E n t / ( ) 3. i sin E n t / ( ) 4. all of the above Is it possible for a purely real wavefuncJon to solve the Jme‐dependent Schrödinger equaJon? 1. Yes 2. No i ∂Ψ t = 2 m 2 2 Ψ x 2 + V ( x , t ) Ψ THE Schrödinger EquaJon: Recap…. The Infinite Square Well V x ( ) = 0, if 0 x a, , otherwise 2 2 m d 2 ψ n dx 2 + V ψ n = E n ψ n We will solve this equaJon first outside the well, then inside, then match up the soluJons.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
1/26/11 2 ψ n x ( ) = 2 a sin n π a x
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}