ma366final10-1Soln

# ma366final10-1Soln - (1 The following vectors X1 and Y1 are...

This preview shows pages 1–13. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (1) The following vectors X1 and Y1 are eigenvectors for a certain 3 X 3 matrix A corresponding to the eigenvalues 2 —7,' and —4 respectively. Find the general solution to the system X ’ : AX 5 pts. in real form. No complex numbers allowed! i+1 1 \$1=': i ], ylzi: 3 ~21 _1 Wm 99: vol/um l7: *4»: toe-Mame ‘: l ‘ Wt): est»: 64th] t {NYCX LOW T'Lvl‘W/ a Wel/WNU- ‘8 \ eh“ = 31W?“ 2 {flu/oats + Mamet»)? : exém; W cm) " ‘~ » all he tthMXMMB \$0: 82w“: ELEM" Wm 2 [6 ngtw {6:005 —€2b(m§tvié{mt)91) ﬁlm: wt—tgmxfim : was =— gwm mt «Flew: ‘ : (mt m) + “mt 9W) LOWS? twat : Wm {QM : Wm Md“ 1 ‘ l ‘ ‘ (ﬁstwg \ (ﬁt-wt) + 4, (Wit » 9W3 {ﬁat-Eng \ P Fl? é¥~bﬁxﬁ @216 C WV + It mt : ezt gm; + 4 5*” C69? -—2<;Mt + i ﬁlm) 3 (2) The Characteristic polynomial for the following matrix is 19(7“) 2 —(7" —— 4)2(T — 5) and the vector Y1 is an eigenvector corre— sponding to 7" = 5. Find the general solution to the system X, = AX. V21; 10 pts. \: 30\ get 03" weak 33’§3 %: A'Ari ‘3 “Ll '2 D] V: [4+ “’2 O ‘2 0]1[—12+% 4 4+}: [-4 4V4 “'0 .3 0 mg 3 b we “’3 e ﬁlm 6 t 4:» b 5 {3 “2’ 1 ill? «ma-:0» o6?- /l~ aitl«s[ll+tl?l «m l U I“ X\ XJﬁ: eA‘VX‘: \ :: €4k<j+£g3g)x‘: €4JC<1+B£>ELE we): BM; éwm I 2 eat mm: eﬂnxﬂl tow %= a: v3 W 6 El 5 pts. (3) Given that X1, X2 and X3 are eigenvectors for the following matrix, ﬁnd the general solution to X ’ : AX. Hint: To ﬁnd the eigenvalue, compute AXi. A: —2 —10 5 X1: —1 X2: 2 X3: 3 —6 —l2 5 —2 2 5 X“ 2 (7 ﬁg \ 242M: 2 y \ it: 92 g -1 i: +2 4]: MM 4, ~12: S “2/ ”l7+\'?x'l0 “'4’ W?" 2Y2 2 0 ""l r1+11ﬁl> 4 ml ‘3“ ~l Mir 92 «i0 é [ Z X: 2. JDMD‘X: [*8 .= ‘4 21” IKE/1:?) Mimi “l, 41 s l gezwo “3 Z ‘2 g —} ‘\ AXE: [*2 “‘0 X] [ 3 \(7 42 S S 80: m: 152’“ , y: (H : ﬁwmomw \f; gym Mew exit) « JV = Cl Clﬁwatl: ij’ée L 5 (4) The following matrix A has characteristic polynomial 19(7") 2 —(r — 5)3. 10 pts. (a) Find e“. (b) Find the general solution to X’ : AX. 521 A: 050 015 E SW Pm: -» (mfg? mm @06me NE: (went Alana-WW ‘ E3X=0~ So women 9%: civil“) Q, (5) A certain EL); 6 matrix A has characteristic polynomial p(r) : —(r-2)2(r—5)4. Let/X be a generalized eigenvector for A correspondinmz S/Give a formula for etAX that does not require summing an/inﬁnite series. Your formula should use as few matrix products as possible relative to the given 5 pts. information. tum. is Amt} . amiwmmt we W thto (6) Find all singular points for the following differential eQuation and state which are regular. Don’t forget to justify your 6 pts. answers! 562(2x — 5)3y” + 533(233 — 5)yl + (x — 1)y : O \. ﬂag) . x4 m Wt X1(2\<~r§);: 0 2? X20 w x: 4: s—a giWﬁ‘AW My X20 )8! mag? \1“ + XC‘XZCQWS}? \I’ + (X4) \{;1) ﬁx” W) in) we r W » \/ .le Xsox‘eox W‘éw «r Vow, WVV’A'W) Sit/Mal \ae swift, Wise , Chute Vloiﬁzmv 37> #0 , So xsolrgawqwfﬁw 3s s l2><s>tixl<2e>3~w bxs)jy’ [email protected],\’i':o V “‘33s?” i”) W3 i \ i \ \ V in. g‘ Myer) [M V i F \ \lwiismwgiiw giggmio "tows/ii 29:” so will Mama?“ Owl Wm, 9M2 (x): MWVSBV/lﬂg):g) (231.9% 30 Xzz‘i lé Wb'i CA (“git/vim \$3M?! :9 i Manama” + n50 (7) Substitute y : 220:0 anmn into the differential equation 4y/l+.(x2+4)yl and simplify until you obtain an expression of the form 00 oo ZR” + '32:” + 2%" = 0 n=? '7 n2? 71:. g Where the exponent of :5 in each sum is n and the question i l 00 marks are explicit expressions. (You do not need to use exactly 3 summation signs.) Do not simplify further! 10 pts. mg #1 : DO hawxlﬁrl t.“ 5‘0 it & Vt ’ W: g: WW 3 z mam 2 wow i “:0 “4:0 l><s 4 [>9 h {>0 V, i 4T ': :0 4“ Wk“ = %D 46W) QMHX 2 g GINAX ' e be (we y” s mm) om“ = (mth (Minnow WM l1: ’2 , ﬂit»; A9: (m) (M) (n+sz (>0 / ‘ h ZMH>OMX “i” :4) QMX‘A :10 w t i ,E.“ t“! S (RDQMXK'F ‘V\=\ “Maw! l‘ § j“ N i. X7 wt (8) In attempting to solve a certain differential equation, we sub~ stituted y 2 23°20 0mm” into the differential equation and sim— 10 pts. plified, obtaining Z 3n(n—1)an9§@+z —3n(n*1)[email protected]+z ~3nangQ+Z [email protected]: 0, “'20 “=0 71:0 n=0 (a) Continue the solution process to obtain the recursion re— “ k 1 be lation. W 3 /X7 *1 ‘9 (I R? w‘ igﬁwanmau g. ,., v M H . go %W\~D WK :: Emma) 0m) QMX : %(~2+?{@u) mx + 3(»\+2V1') OM i W; i 60 N n ‘ as Z, [momma w» mm Wm M awn“ x a o “90 ‘ 3 (Nil) (Mb aw? [’BVLGH‘) a: C :iﬂ?i«%ﬁ%%:ti >ﬂm"; 8W1“) QM / _'_ Dal/EH /// :39 OMQ 1W QIM/ (b) Find the ﬁrst three non-zero terms of the power series expansion for the so ution yl satisfying y1(0) = 0, 341(0) 2 2 \l‘ = 00mm mum :9 W0»: 90:0 \ 1 / ' / ﬂ! = OH + mew «ma +w reﬁne): / r v // l/\:(> ~. Q2 * Jam 0 2 O // z : K t it i L m i Oh’ ‘ 3mm 0‘ ” or 9 (9) The following differential equation has a regular singularity at x a: = 0. 9 pts. \’ ‘ gwemim‘ 132(373 + 2x + 1)y” + x(4:c3 + x + 6)y’ + (a; + 6)y : o, r» > 4 (@6ka & (a) Give the approximating Euler equation. (aware ‘80 We ﬁfty 3495mm mm :0 we have; 4306: x‘nw , \$3M: 4X19+x+g I ﬁx); We 1/ j :9 no»: l , age»: 6 , Woké AWWﬂWWwﬂ Ellie/c" W035“ kw», {um : \$3 110) ”+ 961%le 7’ + Y\(o)\{:5 :13“) x‘ "+ WW w :o/ (b) Give t 1e indicial equation. Let we“ , Wm We: swamxl’th swim ~+ Meg; MEN tn t5 val”: o (YZK‘PFE) XV?“ :9 New) : 0 A— imdr/OA(€2 graham V Kimmy =0 3? Vivi” 97"! (C) Use Theorem 5.6. on p. 289 of the text to describe/the expected form of the solutions. Do not ﬁnd the/(fefﬁ- n: ’2‘ (2:); \$%E\ cients of the series expansions! If, {in be J23 be /’ D9 {/1/ s 50 We: oxllwxwylm >515: lax“ : Mix)“; QM + >< EM” .4) K M51 be u w : (1(th w + m 3 (OxC/oleoe 0 Mi) 6 pts. 10 (10) You are given that = 9:2 is a solution of the following differential equation. Use the method of reduction of order to ﬁnd a second independent solution. Other methods will not receive credit! 3:23;” — 3553/ + 4y 2 0. 91m: \$00 = X1 Lz-N—A X1 ’l3 4‘5 so vi 2 ml"; 3 l; = WM €49: 6%le : X3 11 (11) Use the 0f the Laplace transform to compute the tr Laplace rm £( f) of the function f (t) deﬁned below. Other methods Will not receive credit! OSt<3 4, 3315. LUV: €26 6% (U; “k K‘mzéeﬁ (if 3 2 Mt W : L e atngng \ _.\_ (2”9t (D) + i Esq?” & >3 ,b “S g 4 pts. 4 pts. 4 pts. 12 (12) Find the inverse Laplace transform of 252 + 4 A F 2 . 2 M (5) 8(82 + 4) ﬁ + =39 233.4: Mﬁéﬁﬁgm g 3 [\$33 4A+B§+ cs: {Aﬁéﬁ C‘SWA’ 4:445 A?! M “L g ' i2=A+E :b gem “:9 R9“ 3 "‘ \$4 0 = (1 x17 x£ " ( )7 age) (13) Find the inverse Laplac r eform of —55 2 2 4 F(s) 3—8 8 + ). : 8(82 + U965) ( \+ (.7, » k) . k % Mesa?) 13 (14) Find the inverse Laplace transfom‘ﬁgof M ( #1 4 Ham 4 pts. C25 / rug. 1‘0 Lia“) I I : F<s>= e - “ \$5 (5 + 2)5 we / km mew We mm: 6’; [Mm/ea: L~‘(¥LQ): gm : 215 Wt). (“794 eater 8 pts. 14 (15) Find the Laplace transform Y(s) of the solution y(t) to the following initial value problem in terms of a and I). Do not ﬁnd y(t). All we want is Y(s)! y” + 23/ — 4y = g(t), 31(0) : a, y’(0) = b. 1 1“ Where QED? 0, ogt<3 3‘ u/~» 97(75): t 3<t ‘ ‘ mm 7 — ﬂxwv~fp { :9 edit): WM q”: Sim» 37w) «— Ylo‘) r: S‘Ym— 06—10 V’s S‘fl£)~ YMI 5%»er \f: We) 3&7 \I”+2\f«ﬂ : Sill” Q9” l> + 2‘3 KW)» 10 - 4V4) 2 {Slag—4,) V5) w Qs~20x—\o 03(40): Wet :— Lt’>>> Matt) +a Mali) / Ge}: HOW) : LB) agar» + Mal/tag) as ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 13

ma366final10-1Soln - (1 The following vectors X1 and Y1 are...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online