ma366final10-2Soln

ma366final10-2Soln - l l D> 9L4(7,k(1 W" L 2 0M C(0(1...

Info icon This preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
Image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 12
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: l l D > 9L4 / (7 ,k/ \(1 W" L) 2 0M C (0 (1) The following vectors X1 and Y1 are eigenvectors for a certain 3 X 3 matrix A corresponding to the eigenvalues 2 —i and —4 respectively. Find the general solution to the system X ’ = AX 5 pts. ‘ in real form. No complex numbers allowed! 7L + 1 1 x1 = ‘ i , 3/1 = 3 —2i ——1 Far mans/r/Msfifl 3-2, . t X ‘ e e- 00) , ' M, ' t {Hf ‘ ' d ) [ uL_ j vyv ’t ‘ mm Jre'hm 45 téwcvast , Lezisiwt! New .4 1» e‘i'cast. ' l-zltg'm-z; — lie“ (as—t I I (AWL 4 LL) 4L it (10% 1‘;th ‘3 i it 3 we {3 "t wag, t (Z {5 2%th “12w“. a CNN 4'59“" OWL " WW AW” 6! if?! £7! F. bl 2/ l 09 iv 5% z > pm 6’" ré +3” VLWX «1, we r: u» fix . ‘ [ZN mama/elm“ if: a V; [Vt [§ 3’ 1 / a v ‘r M fhfigwmg FfljMf/féfl 9'3 are +1 s/cl ;» AW 2? Mt)’ (wit $th 0 ML (Lgtifmtém «if C323 [3" J ‘3: M t ”9% , 1 Law . ‘1 Midi, J E? ii) I oi) (2) The characteristic polynomial for the following matrix 15 p(7")= —('r — 4)2 (7“ — 5) and the vector Yl is an eigenvector corre- sponding to 7" — —.5 Find the general solution to the system X’ : AX. 10 pts. FM Fri; : U‘LTL) his {A N/ mam ‘1": $7M 43M ‘7sz :M‘rfi/ mozmemrg, by {vii/”.3. CA HYX o . , W é""1“”: 3 a a ' . [to -2 0 ~19 ,3 o , 92_[:3:1 ”fig? w; 3“; 3 fl =- 5* Ni: «1 al: [LE 3::\ (A'Jflyxifiw » ,1 5‘5 :3 L: (L: 91$; “ 3 ”l4 £7 YEN/“1”] / New” Rm 1:: :3; l: , 111 4:1; "f , A :Q:% EDA—M; :l’l] 10> (219143“ 6 6 tier? 1 W111 : cit/(M’é‘l’l FM V 5’, 1‘ T / m hm”)? WM” 11-: that r 13‘” lliffl refill $553} atrial g: 2.4%, 1H3}; / U0 4 (3) Given that X1, X2 and X3 are eigenvectors for the following matrix, find the general solution to X’ = AX. Hint: To find 5 pts. the eigenvalue, compute AXi. 2 6 —3 1 ‘ —i —1 A: ——2 —-10 5 X1: -1 7 X2: 2 X3: 3 —6 ——12 5 —2 2 v 5 705 film! «3'; “1 (A'r!1)Yl ‘ 0 [2W {an ”a? [, [:5 ,1 ”Ir “,9 c 5 . x _ l '5 ”’12.. {if n. "1"} 3:1 Xv}: €41 {.5 "L (9"?) i +4 : 0 ‘7 m H a” r .' A ‘ Wm”; a A”? l; ‘3 ”E 'l “Y a .3: “My? g§[u v e] «3;, 5;ij ”L 0 .. , o , '41 1! {Ml—knife: 0, _ 003(0)~€ [3;] f h “l girl" i Y 1 v (, “.7 - -1 «(w 5% [ 1;) 5 [if 4' "£1 34/ S" 0 l .4, .. «Hkflgdg» D g? MUH'e ['3] a“? v1 7 O ' // 04 f“! 75 mféfi .1353 lwflh’i’ 5% / (4) The following matrix A has characteristic polynomial p(r) : —(7~ — 5).3. 10 pts. (a) Find e“. (b) Find the general solution to X’ = AX. 5 2 1 0 O 0 5 1—401 (DU (5) A certain 6 X 6 matrix A has characteristic polynomial p(r) : —(7"——2)2(r~5)4. Let X be a generalized eigenvector for A corresponding to 7" = 5. Give a formula for etAX that does not require summing an infinite series. Your formula should use as few matrix products as possible relative to the given 5 pts. information. LQ7‘ (/9 51)X:o» 15= Ill ‘31 :W 7,7 8+5]: €777) €(6’+5.Z)f @157 ‘ @777} (6) Find all singular points for the following differential equation and state which are regular. Don’t forget to justify your 6 pts. answers! $2(2:1: — 5)3y” + 233(2x ~ 5)y’ + (a: _ 1);; = 0 (7’40" «Nu Pew}?! pumfli a}! my)? :9 a: 3L 0 W; WE can Ll) My: )5 3?? film? 4574 f/sA-wafl‘f jjwiflfJ. MHCD Mitw ‘l’hH X I) }5 a maul/w qéwvli’eg PM“, ~ >4) (w mix) 4, rm (xx 9).? + (.4 {Big 9H) 70(4): ova/)7 .5704): X (2x 57°) 7 pm) . PM). i “ as] I a (Mr/Le WK), 7‘70 aw? WV) any fimégy‘w [927, “9553?- K¢ ; 420 K b ,5 a [9574,1041 gm7m/a? jaw-m 3}“ (flwél) fiflnw MM my 7% _ ”flaming 71:79: Mir/huff / 5 l) a; :‘sz a3] £145.34 .7 yr {2354;7in «({K PM) \( (by g? 57“): x; , Vf‘éj-‘ff‘iryjfi / PLEQ‘O 7/77 ' 7 / If)”, M 7W; .‘i 9,1qu 9/4 {WMU‘V élbfimfé’y ffii'h”; ~ 71? Ere , - v €\V\LQ l §> 100 l I / if; (7) Substitute y 2 271—0 anm” into the differential equation 49” +. (m2 +/l.l)y filmy :.g and simplifyoo until youoo obtain an 0C)expression of the form 2%” +;?x” +21%” =0 71:? 71:? Where the exponent of cu in each sum is n and the question marks are explicit expressions. (You do not need to use exactly 3 summation signs.) Do not simplify further! 10 pts via “3 em; I], m , V): I?“ 19!?an I: £02 Viflmx / V‘ goi’llngfiflxh 91’ 7" =l> H17”'génm DIM/9"? w M f? .2 ,m m” if” I, : §[email protected]fl¥})(m’fi) 47?»;er . m:—). we Liv/I”: 5:1 [I‘M-fgflwa $1.an aw: Br ”I :1) at)!" giwnXM’ . _ 91:17 W Mzm‘l MY”?! I ”g m 1 9L4 ’£,\_Mv1)amx 1 1 49 XV] " z UPOQWDEW n2; . 00 4(99 : €41) fl?) ){P‘H n50 / (1“? Mt?! ~ A3VVH . // I m l I f ‘ // 4m / fl Hwy/Imam / wt , if I :- ‘0 ,1” f? « 21 40179 at)“ // ’l m 14513 ”I 4;; /fle€r ‘3 . fl , D: 2:7 11'- (III’WI’PI‘Uflmin ~r Z m WM y” ”f a; “Will/is ii if: 1/;in LO / (7 (:E (8) In attempting to solve a certain differential equation, we sub— stituted y 2 22:0 anx" into the differential equation and sim— 10 pts. plified, obtaining ' . 2371(71— 1 )anx” 2+Z— —3n(n— 1) )anx “+2 —3nan:r” +2 —ana:“ — *.0 17,20 (a) Continue the solution process to obtain the recursion re— lation. E :3: in“) I) Mr) 1% W M: M . “’m‘” 00 00 M a 5mm) and“ 7, fl 77WM-H)( M“) arm»): “:0 in”): rm} 9‘1: '2 : fig 73 Um) (n+2) Mm)! %Em+om+l)0mx "’ 50 (””0414 when '1” 6454:1364; D ’7 1 ‘- Brash; {5 “m (“WWW “W 3) 5nUI-P) an finer/2-5m :0 E (@007 I) + 50 +1 :lflwx’ an“ : iii/H!) (1H2) : (ran +2) 3w 0 (w) ' i ' $0“me MM? 0:0,“)Ie‘” (b) Find the first three non-zero terms of the power series expansion for the solution yl satisfying y1(0)— — 0, 111(0) : V6; 0% A”)! L 010-? @X 5; mic 4r: ‘ M it”): D / W”) E f VQIMDIQ / vi L7 5:79 a £2 flint? flaw? / 4,2? 5“ "’ 4 I’L/ , W ’“ mifTfi’ 5' Wk 1 ail , e ,, - , the M 133%? ij {WET}? M, 4 mew m ' it; t g (9) The following differential equation has a regular singularity at m : 0. 332(333 + 293 + 1)y"+ 20(4133 + x + 6)y' + (II? + 6)y = O. (a) Give the approximating Euler equation [900-)L5wyfl p40): 1 / 45’0” 4zl+x+é ,gzm ,. a Hg) ; ML ; r60)“é 96» H4? flxfiwaXéMfiflhf éMLgy gnawi%‘i‘” MY! 8) x0 +9!” + 617“" (b) Give the indicialequation Jrlr , I WHO : t {N} X 2 (1+ gar? ,«4’ Nr)>< + emu +636 (F>—l’-+Z>r-HD)JC ' (_ r5+gr+é§ 5'0 30 HA" Mails/Ml fimfiwf‘rw lg Tzvférfir'é. =7?) (C) Use Theorem 5.6.1 on p. 289 of the text to describe the expected form of the solutions. Do not find the coeffi— cients of the series expansions! F1+5frf6 ’0 (r—r35( n+9 :0 waQ WW4 H “'3: ”A: t SW hm mm“): x "5;: M A ,l em l“, — r3 : «was; a i ; «W WI?!“ W t , OM) anjflwl filxwflbw 00 4% 9 pts. 6 pts. 10 «K's (10) You are given that y(a:) = $2 is a solution of the following differential equation. Use the method of reduction of order to find a second independent solution. Other methods Will not receive credit! fly” - 3052/ + 4y = O.‘ U ewe WkW Vi? W3; mm team a”? a raga? , firsmxjg, 7* maxi" ‘, / WAN? Mggfltfflfiéfifim‘gfi if” 6’0“" " : “V (Jig u’:14 M S f X“ y/x 1’ 1mm a" 41’” V] g" 11 (11) Use the definition of the Laplace transform to compute the Laplace transform £( f) of the function f (13) defined below. Other methods Will not receive credit! 4 pts. 82t O<t<3 t: 7 _ fl) {4, 3st. 6y {Ax M/é‘mH/‘vw A1715 16% gflfieg 7%AJ/120YM, I790 A Ugo) " J0 figjg’fii' ”G: .5 N Wu i} €3£€'$*J¢ ~16 / 4521““:- J g i «>0 % i5 e a; ’ t ‘ itafiybfifgf’édp’fifij of if) #3 {M “" (24) J 3 ”'5 ‘ C249» 3 m * mi / + (:27 _) fig) i0 \v ”5 3 (24M) __ Q L [+235 WW _ / 22's D“$ “T “Ty/ 4 pts. 4 pts. 1; if)“ ( i (12) Find the inverse Laplace transform of 252+4 F(S)_s(52+4)' ' ’ " 3% MW?) MUM 2-: W5‘+H + (Bfwjg 9’9, 4&6? ) MIL/5%) (“=0 “3‘! 8:3»i Z/ f/g); .1.» + g ‘3 saw (13) Find the inverse Laplace transform of F(3) : W_ 3(82+4) M an); an“; a???) z ,L + 5 “g 53M :0 ”(5%) F ‘ I + (”049%, ;}(JC)» I“ M} Q'égfla) fl ( Mgf-t‘) §c¢49 j fly C(Ms;l{)( 450g596+§ ) .. i i fa H) : MxetH 1+ {9£{3~&»F03> (14) Find the inverse Laplace transform of €23 /F(S):(s+2)5' L64 3 6M ) Elf—W 3;) W (5+2); h6U-‘JLMT $4 13 67 4 pts. ; ’2 I ’24; 99561“) :‘F(ff)):fl:A 64g )6 42(1)) “/v {NE ”5 :)/ ’1’H2-t ‘f 7% 6 GM) LC (ha) 3mm) V ,L, ( VIM-L) Ca’umhfioy (7%)) ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern