This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: IE 230 Seat # ________ Name _______________________ Closed book and notes. 60 minutes. Cover page and four pages of exam. Pages 8 and 12 of the Concise Notes. No calculator. No need to simplify answers. This test is cumulative, with emphasis on Section 4.7 through Chapter 6 of Montgomery and Runger, fourth edition. Remember: A statement is true only if it is always true. One point: On the cover page, circle your family name. One point: On every page, write your name. The random vector ( X 1 , X 2 , . . . , X k ) has a multinomial distribution with joint pmf P( X 1 = x 1 , X 2 = x 2 , . . . , X k = x k ) = x 1 ! x 2 ! . . . x k ! n ! hhhhhhhhhhhhh p 1 x 1 p 2 x 2 . . . p k x k when each x i is a nonnegative integer and x 1 + x 2 + . . . + x k = n ; zero elsewhere. The linear combination Y = c + c 1 X 1 + c 2 X 2 + . . . + c n X n has mean and variance E( Y ) = c + i = 1 n E( c i X i ) = c + i = 1 n c i E( X i ) and V( Y ) = i = 1 n j = 1 n cov( c i X i , c j X j ) = i = 1 n j = 1 n c i c j cov( X i , X j ) = i = 1 n c i 2 V ( X i ) + 2 i = 1 n 1 j = i + 1 n c i c j cov( X i , X j ) . Cov( X , Y ) = E[( X X ) ( Y Y )] Corr( X , Y ) = Cov( X , Y ) / ( X Y ) X d = i = 1 n X i / n S 2 = i = 1 n ( X i X d ) 2 / ( n 1) Order statistics satisfy X (1) X (2) . . . X ( n ) . Score ___________________________ Exam #3, Nov 30, 2010 Schmeiser IE 230 Seat # ________ Name _______________________ Closed book and notes. 60 minutes. 1. (3 points each) True or false. Consider two continuous random variables X and Y with probability density functions f X and f Y , expected values X and Y , standard deviations X and Y , and correlation X , Y . (a) T F X ( v ) = f X ( v ) dv (b) T F f X , Y ( x , y ) = f Y ( y ) f X  Y = y ( x ) (c) T F E( X Y ) = X Y (d) T F Var( X Y ) = X 2 Y 2 (e) T F  Cov( X , Y )  X Y (f) T F If X , Y = 0, then X and Y are independent. (g) T F If X and Y are independent, then X , Y = 0. (h) T F If ( X , Y ) is bivariate normal, then both X and Y are normal. 2. (3 points each) Consider the notation from Question 1 above. For each of the following, indicate whether the expression is a constant, an event, a random variable, or undefined. (A constant has the same numerical value for every replication of the experiment.) (a) X Y constant event random variable undefined (b) X X constant event random variable undefined (c) X 1 / 2 / Y 1 / 2 constant event random variable undefined (d) X > 1 / 2 constant event random variable undefined (e) XY > X Y constant event random variable undefined Exam #3, Nov 30, 2010 Page 1 of 4 Schmeiser IE 230 Probability & Statistics in Engineering I...
View
Full
Document
 Fall '08
 Xangi

Click to edit the document details