{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

lecture11

# lecture11 - Lecture-11 Conditional Density Functions and...

This preview shows pages 1–5. Sign up to view the full content.

1 Lecture-11 Conditional Density Functions and Conditional Expected Values As we have seen in Lecture 4 conditional probability density functions are useful to update the information about an event based on the knowledge about some other related event (refer to example 4.7). In this lecture, we shall analyze the situation where the related event happens to be a random variable that is dependent on the one of interest. From (4.11), recall that the distribution function of X given an event B is (1) ( 29 ( 29 . ) ( ) ) ( ( | ) ( ) | ( B P B x X P B x X P B x F X = = ξ ξ

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Suppose, we let Substituting (2) into (1), we get where we have made use of (7.4). But using (3.28) and (7.7) we can rewrite (3) as To determine, the limiting case we can let and in (4). { } . ) ( 2 1 y Y y B < = ξ (3) (2) ( 29 , ) ( ) ( ) , ( ) , ( ) ) ( ( ) ( , ) ( ) | ( 1 2 1 2 2 1 2 1 2 1 y F y F y x F y x F y Y y P y Y y x X P y Y y x F Y Y XY XY X - - = < < = < ξ ξ ξ . ) ( ) , ( ) | ( 2 1 2 1 2 1 - = < y y Y x y y XY X dv v f dudv v u f y Y y x F (4) ), | ( y Y x F X = y y = 1 y y y + = 2
3 This gives and hence in the limit (To remind about the conditional nature on the left hand side, we shall use the subscript X | Y (instead of X ) there). Thus Differentiating (7) with respect to x using (8.7), we get (5) (6) . ) ( ) , ( ) | ( lim ) | ( 0 y f du y u f y y Y y x F y Y x F Y x XY X y X - = + < = = (7) (8) y y f y du y u f dv v f dudv v u f y y Y y x F Y x XY y y y Y x y y y XY X = + < - + - + ) ( ) , ( ) ( ) , ( ) | ( . ) ( ) , ( ) | ( | y f du y u f y Y x F Y x XY Y X - = = . ) ( ) , ( ) | ( | y f y x f y Y x f Y XY Y X = =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 It is easy to see that the left side of (8) represents a valid probability density function. In fact and where we have made use of (7.14). From (9) - (10), (8) indeed represents a valid p.d.f, and we shall refer to it as the conditional p.d.f of the r.v X given Y = y . We may also write From (8) and (11), we have ). | ( ) | ( | | y x f y Y x f Y X Y X = = (9) 0 ) ( ) , ( ) | ( = = y f y x
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 15

lecture11 - Lecture-11 Conditional Density Functions and...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online