Lecturenotes18-21March2011

Lecturenotes18-21March2011 - Properties of Matrix...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Properties of Matrix Transformations Theorem 4.9.1: For every matrix A the matrix transformation T A : R n R m has the following properties for all vectors u and v in R n and for every scalar k: (a) T A (0) = 0 (b) T A ( ku ) = kT A ( u ) (Homogeneity property) (c) T A ( u + v ) = T A ( u ) + T A ( v ) (Additivity property) (d) T A ( u- v ) = T A ( u )- T A ( v ) Note: We can extend part (c) of Theorem 4.9.1 to three or more vectors. T A ( c 1 v 1 + c 2 v 2 ) = c 1 T A ( v 1 ) + c 2 T A ( v 2 ) (Exercise: show this is true) In fact if v 1 ,v 2 ,...,v k are vectors in R n and c 1 ,c 2 ,...,c k are any scalars then T A ( c 1 v 1 + ... + c k v k ) = c 1 T A ( v 1 ) + ... + c k T A ( v k ) Theorem 4.10.2 T: R n R m is a matrix transformation if and only if the following relationships hold for all vectors u and v in R n and for each scalar k: (a) T(u+v)=T(u)+T(v) (Additivity property) (b) T(ku)=kT(u) (Homogeneity property) Theorem 4.9.2: If T A : R n R m and T B : R n R m are matrix transformations,...
View Full Document

Page1 / 3

Lecturenotes18-21March2011 - Properties of Matrix...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online