Ch_02 - Laplace Transform - Problems

Ch_02 - Laplace Transform - Problems - Problems for Laplace...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Problems for Laplace Transform
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Laplace Transform Fundamentals Fundamentals 1. Example of the definition of Laplace transform Solve following integral using Laplace transform. (A) 3 0 sin 2 t et d t (B) 2 0 cos 2 t te t dt (C) 2 0 sin t tdt Solution: (A) Use the definition of the Laplace transform: {} 3 3 0 sin 2 sin 2 t s d t t = = L Let () s in2 f tt = , then 2 2 ˆ () 4 fs s = + , therefore 3 2 3 0 3 22 sin 2 sin 2 13 4 t s s d t t s = = == = + L (B) Let 2 t τ = , then 2 dt d = , so 2 1 00 11 cos2 cos cos 44 t s e d ττ ∞∞ −− = ∫∫ L Let () c o s f = , then 2 ˆ 1 s s = + 2 1 0 1 1 1 1 2 ˆ ' cos 2 ( ) ( ) 0 4 ( 1 ) t s s s ss f f s s = = = +− = = + L (C) 2 2 0 sin sin t s te t dt t t = = L Let s in f = , then 2 1 1 s = + 2 2 0 2 2 24 ˆ ' sin ( ) ( ) 25 (1 ) t s s s s te t dt t f t f s s = = = = = + L
Background image of page 2
Laplace Transform Fundamentals 2. Examples of shifting theorem (A) Find the Laplace transform of the following function () f t . ( 2 ) ft tut = (B) Find the Laplace transform of the following function f t . 2 ( 2 ) = where () ut is the unit step function. Solution: (A) Use the property of {( ) ( ) } {( ) } as ftu t a e ft a −= + LL { } { } {} 2 2 2 2 ( 2 ) 2 2 12 s s s et e s s =− =+ ⎛⎞ ⎜⎟ ⎝⎠ L L (B) ) ( ) } ) } as e + { } 2 22 2 32 ( 2 ) (2 ) 44 244 s s s t ut t e s ss = ++ + L L
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Laplace Transform Fundamentals 3. Examples of change of scaling property (A) Given {} 2 cos 1 s t s = + L , determine { } cos bt L (B) Given 2 1 sin 1 t s = + L , determine { } sin bt L Solution: Use the formula of 1 () ( ) s s a fa t ft a = LL (A) () cos f tt = 2 2 2 22 1/ 1 cos (/) 1 s bb s s bt b s b bsb sb =⋅ = ⋅ = + ++ L (B) Since () s in f = 2 2 2 11 1 sin bt b s s b s b = + L 4. Examples of derivative and integral property (A) Given 2 cos 1 s t s = + L , determine { } sin t L (B) Given 2 1 sin 1 t s = + L , determine { } cos t L Solution: Use the formula of { } ' (0 ) f ts f tf =− (A) f = , then ' s f { } 2 2 sin cos cos(0) 1 1 1 sin 1 ss s t s s t s −− −= = ⋅− = = + = + L (B) f = , then ' f = 1 cos sin sin(0) 0 s t s = = + +
Background image of page 4
Laplace Transform Fundamentals 5. Examples of derivative and integral property Evaluate the following by using the derivatives of transform , { } sin tt ω L Solution: Use the formula {} 2 ˆ () () (0 ) ) ft s fs s f f ′′ =− L Let s in f t = , then 2 2 s in cos 2 cos s 2c o s ( ) t t t f t t tf t ωω ωωω = + and (0) (0) 0 ff == . { } { } { } 22 2 2 s o ( ) o s s i n 2 f ts f t t t t s s = + LL L L Hence 2 2 sin s s = + L General Method ˆ ( 1 ) n nn n d tft fs ds L 2 ˆ sin ( 1) ( ) 2 d f s ds ds ds ss ⎡⎤ = ⎢⎥ ++ ⎣⎦ L
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Laplace Transform Fundamentals 6. Examples multiplication and division property Find the Laplace transform of the following functions. (A) 3 () cos2 t zt te t = (B) 3 s in2 t t = Solution: (A) Let () cos2 g tt = , then, {} 2 co s2 4 s gs t s == + L By the formulas of {( ) } ( 1 ) ( ) n nn n d tft fs ds =− L , apply 1 n = , 222 22 2 2 2 42 4 cos 2 4( 4 ) ( 4 ) ds s s s ds s s s ⎛⎞ +− ⎡⎤ = ⎜⎟ ⎢⎥ ++ + ⎣⎦ ⎝⎠ L by the shifting theorem, ˆ ( ) at ef t f sa = + L ( 3 a = ), therefore 3 2 2 (3 )4 65 ˆ cos 2 ( ) [( 3) 4] ( 6 13) t ss s te t f s a s + + =+ = = + + L (B) Let () s g = , then, 2 2 s 4 t s + L By the formulas of ) } ( 1 ) ( ) n n d ds L , apply 1 n = , 2 24 sin 2 4 ) ds s s = L by the shifting theorem, ˆ ( ) at t f = + L ( 3 a = ), therefore 3 2 2 4( 3) 4 12 ˆ s [( 3) 4] ( 6 13) t t e t s === + + L
Background image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 64

Ch_02 - Laplace Transform - Problems - Problems for Laplace...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online