Calculus: One and Several Variables

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-05 JWDD027-Salas-v1 November 25, 2006 15:58 SECTION 5.2 229 CHAPTER 5 SECTION 5.2 1. L f ( P ) = 0( 1 4 ) + 1 2 ( 1 4 ) + 1( 1 2 ) = 5 8 , U f ( P ) = 1 2 ( 1 4 ) + 1( 1 4 ) + 2( 1 2 ) = 11 8 2. L f ( P ) = 2 3 ( 1 3 ) + 1 4 ( 5 12 ) + 0( 1 4 ) + ( 1)(1) = 97 144 , U f ( P ) = 1( 1 3 ) + 2 3 ( 5 12 ) + 1 4 ( 1 4 ) + 0(1) = 97 144 3. L f ( P ) = 1 4 ( 1 2 ) + 1 16 ( 1 4 ) + 0( 1 4 ) = 9 64 , U f ( P ) = 1( 1 2 ) + 1 4 ( 1 4 ) + 1 16 ( 1 4 ) = 37 64 4. L f ( P ) = 15 16 ( 1 4 ) + 3 4 ( 1 4 ) + 0( 1 2 ) = 27 64 , U f ( P ) = 1( 1 4 ) + 15 16 ( 1 4 ) + 3 4 ( 1 2 ) = 55 64 5. L f ( P ) = 1( 1 2 ) + 9 8 ( 1 2 ) = 17 16 , U f ( P ) = 9 8 ( 1 2 ) + 2( 1 2 ) = 25 16 6. L f ( P ) = 0( 1 25 ) + 1 5 ( 3 25 ) + 2 5 ( 5 25 ) + 3 5 ( 7 25 ) + 4 5 ( 9 25 ) = 14 25 , U f ( P ) = 1 5 ( 1 25 ) + 2 5 ( 3 25 ) + 3 5 ( 5 25 ) + 4 5 ( 7 25 ) + 1( 9 25 ) = 19 25 7. L f ( P ) = 1 16 ( 3 4 ) + 0( 1 2 ) + 1 16 ( 1 4 ) + 1 4 ( 1 2 ) = 3 16 , U f ( P ) = 1( 3 4 ) + 1 16 ( 1 2 ) + 1 4 ( 1 4 ) + 1( 1 2 ) = 43 32 8. L f ( P ) = 9 16 ( 1 4 ) + 1 16 ( 1 2 ) + 0( 1 2 ) + 1 16 ( 1 4 ) + 1 4 ( 1 2 ) = 5 16 , U f ( P ) = 1( 1 4 ) + 9 16 ( 1 2 ) + 1 16 ( 1 2 ) + 1 4 ( 1 4 ) + 1( 1 2 ) = 9 8 9. L f ( P ) = 0 ( 6 ) + 1 2 ( 3 ) + 0 ( 2 ) = 6 , U f ( P ) = 1 2 ( 6 ) + 1 ( 3 ) + 1 ( 2 ) = 11 12 10. L f ( P ) = 1 2 ( 3 ) + 0( 6 ) + ( 1)( 2 ) = 3 , U f ( P ) = 1( 3 ) + 1 2 ( 6 ) + 0( 2 ) = 5 12 11. (a) L f ( P ) U f ( P ) but 3 2 . (b) L f ( P ) 1 1 f ( x ) dx U f ( P ) but 3 2 6 . (c) L f ( P ) 1 1 f ( x ) dx U f ( P ) but 3 10 6 . 12. (a) L f ( P ) = ( x + 3)( x 1 x ) + ( x 1 + 3)( x 2 x 1 ) + + ( x n 1 + 3)( x n x n 1 ) , U f ( P ) = ( x 1 + 3)( x 1 x ) + ( x 2 + 3)( x 2 x 1 ) + + ( x n + 3)( x n x n 1 ) (b) For each index i x i 1 + 3 1 2 ( x i 1 + x i ) + 3 x i + 3 Multiplying by x i = x i x i 1 gives ( x i 1 + 3) x i 1 2 ( x 2 i x 2 i 1 ) + 3( x i x i 1 ) ( x i + 3) x i . Summing from i = 1 to i = n , we find that L f ( P ) 1 2 ( x 2 1 x 2 ) + 3( x 1 x ) + 1 2 ( x 2 n x n 1 2 ) + 3( x n x n 1 ) U f ( P ) P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-05 JWDD027-Salas-v1 November 25, 2006 15:58 230 SECTION 5.2 The middle sum collapses to 1 2 ( x n 2 x 2 ) + 3( x n x ) = 1 2 ( b 2 a 2 ) + 3( b a ) Thus b a ( x + 3) dx = 1 2 ( b 2 a 2 ) + 3( b a ) 13. (a) L f ( P ) = 3 x 1 ( x 1 x ) 3 x 2 ( x 2 x 1 ) 3 x n ( x n x n 1 ) , U f ( P ) = 3 x ( x 1 x ) 3 x 1 ( x 2 x 1 ) 3 x n 1 ( x n x n 1 ) (b) For each index i 3 x i 3 2 ( x i + x i 1 ) 3 x i 1 ....
View Full Document

Page1 / 59

ch05[1] - P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online