# Calculus: One and Several Variables

This preview shows pages 1–6. Sign up to view the full content.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-10 JWDD027-Salas-v1 December 2, 2006 16:41 524 SECTION 10.1 CHAPTER 10 SECTION 10.1 1. y = 1 2 x 2 vertex (0 , 0) focus (0 , 1 2 ) axis x =0 directrix y = 1 2 2. y = 1 2 x 2 vertex (0 , 0) focus (0 , 1 2 ) axis x directrix y = 1 2 x y x y 3. y = 1 2 ( x 1) 2 vertex (1 , 0) focus (1 , 1 2 ) axis x =1 directrix y = 1 2 4. y = 1 2 ( x 1) 2 vertex (1 , 0) focus (1 , 1 2 ) axis x directrix y = 1 2 1 x y 1 x y 5. y +2= 1 4 ( x 2) 2 vertex (2 , 2) focus (2 , 1) axis x =2 directrix y = 3 6. y 2= 1 4 ( x +2) 2 vertex ( 2 , 2) focus ( 2 , 3) axis x = 2 directrix y 2 x y -2 x y

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-10 JWDD027-Salas-v1 December 2, 2006 16:41 SECTION 10.1 525 7. y = x 2 4 x vertex (2 , 4) focus (2 , 15 4 ) axis x =2 directrix y = 17 4 8. y = x 2 + x +1 vertex ( 1 2 , 3 4 ) focus ( 1 2 , 1) axis x = 1 2 directrix y = 1 2 2 x y 1 2 x y 9. x 2 9 + y 2 4 =1 center (0,0) foci ( ± 5 , 0) length of major axis 6 length of minor axis 4 10. x 2 4 + y 2 9 center (0,0) foci (0 , ± 5) length of major axis 6 length of minor axis 4 11. x 2 4 + y 2 6 center (0,0) foci (0 , ± 2) length of major axis 2 6 length of minor axis 4 12. x 2 4 + y 2 3 center (0,0) foci ( ± 1 , 0) length of major axis 4 length of minor axis 2 3
P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-10 JWDD027-Salas-v1 December 2, 2006 16:41 526 SECTION 10.1 13. x 2 9 + ( y 1) 2 4 =1 center (0,1) foci ( ± 5 , 1) length of major axis 6 length of minor axis 4 14. x 2 + ( y 3) 2 4 center (0,3) foci (0 , 3 ± 3) length of major axis 4 length of minor axis 2 15. ( x 1) 2 16 + y 2 64 center (1,0) foci (1 , ± 4 3) length of major axis 16 length of minor axis 8 16. ( x 2) 2 25 + ( y 3) 2 16 center (2,3) foci (5 , 3) ( 1 , 3) length of major axis 10 length of minor axis 8 17. x 2 y 2 center (0,0) transverse axis 2 vertices ( ± 1 , 0) foci ( ± 2 , 0) asymptotes y = ± x 18. y 2 x 2 center (0,0) transverse axis 2 vertices (0 , ± 1) foci (0 , ± 2) asymptotes y = ± x

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-10 JWDD027-Salas-v1 December 2, 2006 16:41 SECTION 10.1 527 19. x 2 9 y 2 16 =1 center (0,0) transverse axis 6 vertices ( ± 3 , 0) foci ( ± 5 , 0) asymptotes y = ± 4 3 x 20. x 2 16 y 2 9 center (0,0) transverse axis 8 vertices ( ± 4 , 0) foci ( ± 5 , 0) asymptotes y = ± 3 4 x 21. y 2 16 x 2 9 center (0,0) transverse axis 8 vertices (0 , ± 4) foci (0 , ± 5) asymptotes y = ± 4 3 x 22. y 2 9 x 2 16 center (0,0) transverse axis 6 vertices (0 , ± 3) foci (0 , ± 5) asymptotes y = ± 3 4 x 23. ( x 1) 2 9 ( y 3) 2 16 center (1,3) transverse axis 6 vertices (4 , 3) and ( 2 , 3) foci (6 , 3) and ( 4 , 3) asymptotes y 3= ± 4 3 ( x 1) 24. ( x 1) 2 16 ( y 3) 2 9 center (1,3) transverse axis 8 vertices (5 , 3) and ( 3 , 3) foci (6 , 3) and ( 4 , 3) asymptotes y = ± 3 4 ( x 1)+3
P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-10 JWDD027-Salas-v1 December 2, 2006 16:41 528 SECTION 10.1 25. ( y 3) 2 4 ( x 1) 2 1 =1 center (1 , 3) transverse axis 4 vertices (1 , 5) and (1 , 1) foci (1 , 3 ± 5) asymptotes y 3= ± 2( x 1) 26. ( x +1) 2 y 2 3 center ( 1 , 0) transverse axis 2 vertices (0 , 0) and ( 2 , 0) foci (1 , 0) and ( 3 , 0) asymptotes y = ± 3( x 27. We can choose the coordinate system so that the

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 04/30/2011 for the course MATH 1431 taught by Professor Any during the Spring '08 term at University of Houston.

### Page1 / 64

ch10[1] - P1: PBU/OVY JWDD027-10 P2: PBU/OVY...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online