# Calculus: One and Several Variables

This preview shows pages 1–4. Sign up to view the full content.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-13 JWDD027-Salas-v1 November 30, 2006 13:43 SECTION 13.1 687 CHAPTER 13 SECTION 13.1 1. length AB :2 5 midpoint: (1 , 0 , 2) 2. length AB 10 midpoint: (0 , 1 , 3) 3. length AB :5 2 midpoint: ( 2 , 1 2 , 5 2 ) 4. length AB :9 midpoint: (1 , 3 2 , 3) 5. z = 2 6. y =1 7. y 8. z = 2 9. x =3 10. x 11. x 2 +( y 2) 2 z +1) 2 =9 12. ( x 1) 2 + y 2 z +2) 2 =16 13. ( x 2) 2 y 4) 2 z +4) 2 =36 14. x 2 + y 2 + z 2 15. ( x 3) 2 y 2) 2 z 2) 2 =13 16. ( x 2) 2 y 3) 2 z 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-13 JWDD027-Salas-v1 November 30, 2006 13:43 688 SECTION 13.1 17. x 2 + y 2 + z 2 +4 x 8 y 2 z +5=0 x 2 x +4+ y 2 8 y +16+ z 2 2 z +1= 5+4+16+1 ( x +2) 2 +( y 4) 2 z 1) 2 =16 center: ( 2 , 4 , 1) , radius: 4 18. Rewrite as x 2 4 x y 2 + z 2 2 z 1+4+1=4 = ( x 2) 2 + y 2 z 1) 2 = 4 center (2 , 0 , 1); radius 2 19. (2 , 3 , 5) 20. (2 , 3 , 5) 21. ( 2 , 3 , 5) 22. (2 , 3 , 5) 23. ( 2 , 3 , 5) 24. ( 2 , 3 , 5) 25. ( 2 , 3 , 5) 26. (0 , 3 , 5) 27. (2 , 5 , 5) 28. (2 , 3 , 3) 29. ( 2 , 1 , 3) 30. (6 , 3 , 3) 31. d ( PR )= 14 ,d ( QR 45 ( PQ 59; [ d ( )] 2 +[ d ( QR )] 2 =[ d ( )] 2 32. Let the vertices be ( x i ,y i ,z i ) ,i =1 , 2 , 3 . Then ± x 1 + x 2 2 , y 1 + y 2 2 , z 1 + z 2 2 ² =(5 , 1 , 3); ± x 2 + x 3 2 , y 2 + y 3 2 , z 2 + z 3 2 ² =(4 , 2 , 1); ± x 1 + x 3 2 , y 1 + y 3 2 , z 1 + z 3 2 ² =(2 , 1 , 0) Solving simultaneously gives vertices (3 , 2 , 2) , (7 , 0 , 4) , (1 , 4 , 2). 33. The sphere of radius 2 centered at the origin, together with its interior. 34. The exterior of the sphere of radius 3 centered at the origin. 35. A rectangular box in the Frst octant with sides on the coordinate planes and dimensions 1 × 2 × 3, together with its interior. 36. A cube of side length 4, together with its interior; the origin in at the center of the cube. 37. A circular cylinder with base the circle x 2 + y 2 = 4 and height 4, together with its interior. 38. x 2 + y 2 + z 2 = 4 and x 2 + y 2 + z 2 = 9 are concentric spheres; Ω is the region between the two spheres.
P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-13 JWDD027-Salas-v1 November 30, 2006 13:43 SECTION 13.1 689 39. Let B =( x,y,z ). Then x +2 2 =1= x =0 , y +3 2 =2= y =1 , z +4 2 =3= z =2 . Therefore B =(0 , 1 , 2). 41. Let P 1 ) be the trisection point closest to A . Then −→ AP 1 = 1 3 AB = ( x a 1 ,y a 2 ,z a 3 )= 1 3 ( b 1 a 1 ,b 2 a 2 3 a 3 ) . Solving for gives ( ± 2 a 1 + b 1 3 , 2 a 2 + b 2 3 , 2 a 3 + b 3 3 ² . Similarly, if P 2 ) is the trisection point closest to B , then ( ± a 1 b 1 3 , a 2 b 2 3 , a 3 b 3 3 ² . 42. The points on the line segment AB are given by x =1+ t, y = 2+3 t, z = 2 2 t, 0 t 1. The line segment AP has length 3 if ³ t 2 +(3 t ) 2 +( 2 t ) 2 = 12 t 2 t 3=3= t = 1 2 3 . Thus, the point P on the line segment AB that is 3 units from A has coordinates: 1+ 1 2 3 , 2+ 3 2 3 , 2 2 2 3 . 43. Substituting the coordinates of the points into the equation Ax + By + Cz + D = 0, we get the equations Ax 0 + D ,By 0 + D ,Cz 0 + D = 0 which implies Ax 0 = 0 = 0 .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 37

ch13[1] - P1 PBU/OVY JWDD027-13 P2 PBU/OVY JWDD027-Salas-v1...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online