bisection - BisectionMethod Major:AllEngineeringMajors

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
05/01/11 http://numericalmethods.eng.usf.edu 1 Bisection Method Major: All Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM  Undergraduates
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Bisection Method      http://numericalmethods.eng.usf.edu
Background image of page 2
                                            http://numericalmethods.eng.usf.edu 3 Basis of Bisection Method Theorem x f(x) x u x An equation f(x)=0, where f(x) is a real continuous function,  has at least one root between x l  and x u  if f(x l ) f(x u ) < 0. Figure 1   At least one root exists between the two points if the function is     real, continuous, and changes sign.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
x f(x) x u x                                             http://numericalmethods.eng.usf.edu 4 Basis of Bisection Method Figure 2  If function        does not change sign between two   points, roots  of the equation            may still exist between the two points.  ( 29 x f ( 29 0 = x f
Background image of page 4
x f(x) x u x                                             http://numericalmethods.eng.usf.edu 5 Basis of Bisection Method Figure 3  If the function        does not change sign between two     points, there may not be any roots for the equation            between the  two points.  x f(x) x u x ( 29 x f ( 29 0 = x f
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
x f(x) x u x                                             http://numericalmethods.eng.usf.edu 6 Basis of Bisection Method Figure 4  If the function        changes sign between two points,      more than one root for the equation             may exist between the two  points. ( 29 x f ( 29 0 = x f
Background image of page 6
                                            http://numericalmethods.eng.usf.edu 7 Algorithm for Bisection Method
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
                                            http://numericalmethods.eng.usf.edu 8 Step 1 Choose x  and x u  as two guesses for the root such that  f(x ) f(x u ) < 0, or in other words, f(x) changes sign  between x  and x u . This was demonstrated in Figure 1. x f(x) x u x Figure 1
Background image of page 8
x f(x) x u x x m                                             http://numericalmethods.eng.usf.edu 9 Step 2 Estimate the root, x m  of the equation f (x) = 0 as the mid point between x  and x u  as x x m = x u + 2 Figure 5    Estimate of x m
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
                                            http://numericalmethods.eng.usf.edu 10 Step 3 Now check the following a) If                     , then the root lies between x
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/01/2011 for the course CHBE 2120 taught by Professor Gallivan during the Spring '07 term at Georgia Institute of Technology.

Page1 / 34

bisection - BisectionMethod Major:AllEngineeringMajors

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online