{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

bisection - BisectionMethod Major: Authors:AutarKaw,JaiPaul...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
05/01/11 http://numericalmethods.eng.usf.edu 1 Bisection Method Major: All Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM  Undergraduates
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Bisection Method      http://numericalmethods.eng.usf.edu
Background image of page 2
                                            http://numericalmethods.eng.usf.edu 3 Basis of Bisection Method Theorem x f(x) x u x An equation f(x)=0, where f(x) is a real continuous function,  has at least one root between x l  and x u  if f(x l ) f(x u ) < 0. Figure 1   At least one root exists between the two points if the function is     real, continuous, and changes sign.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
x f(x) x u x                                             http://numericalmethods.eng.usf.edu 4 Basis of Bisection Method Figure 2  If function        does not change sign between two   points, roots  of the equation            may still exist between the two points.  ( 29 x f ( 29 0 = x f
Background image of page 4
x f(x) x u x                                             http://numericalmethods.eng.usf.edu 5 Basis of Bisection Method Figure 3  If the function        does not change sign between two     points, there may not be any roots for the equation            between the  two points.  x f(x) x u x ( 29 x f ( 29 0 = x f
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
x f(x) x u x                                             http://numericalmethods.eng.usf.edu 6 Basis of Bisection Method Figure 4  If the function        changes sign between two points,      more than one root for the equation             may exist between the two  points. ( 29 x f ( 29 0 = x f
Background image of page 6
                                            http://numericalmethods.eng.usf.edu 7 Algorithm for Bisection Method
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
                                            http://numericalmethods.eng.usf.edu 8 Step 1 Choose x  and x u  as two guesses for the root such that  f(x ) f(x u ) < 0, or in other words, f(x) changes sign  between x  and x u . This was demonstrated in Figure 1. x f(x) x u x Figure 1
Background image of page 8
x f(x) x u x x m                                             http://numericalmethods.eng.usf.edu 9 Step 2 Estimate the root, x m  of the equation f (x) = 0 as the mid point between x  and x u  as x x m = x u + 2 Figure 5    Estimate of x m
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
                                            http://numericalmethods.eng.usf.edu 10 Step 3 Now check the following a) If                     , then the root lies between x
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 34

bisection - BisectionMethod Major: Authors:AutarKaw,JaiPaul...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online