Lectures on Numerical Analysis

Lectures on Numerical Analysis - Lectures on Numerical...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Lectures on Numerical Analysis Dennis Deturck and Herbert S. Wilf Department of Mathematics University of Pennsylvania Philadelphia, PA 19104-6395 Copyright 2002, Dennis Deturck and Herbert Wilf April 30, 2002
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2
Background image of page 2
Contents 1 Differential and Difference Equations 5 1 . 1 In t rodu c t i on. ................................... 5 1 . 2 L in e a requa t i on sw i thc s t an tc o effi c i en t s................... 8 1 . 3 D iff e r c eequa t i s ............................... 1 1 1 . 4 Compu t ingw i thd e r c t i s...................... 1 4 1.5 Stability theory . ................................. 1 6 1.6 Stability theory of difference equations . . . . ................. 1 9 2 The Numerical Solution of Differential Equations 23 2 . 1 Eu l e r sm e thod . 2 3 2 . 2 So f tw a r eno t e s .................................. 2 6 2 . 3 Sy s t em sandequa t i so fh i gh e ro rd e r ..................... 2 9 2 . 4 H owt odo cum tap g ram . ......................... 3 4 2 . 5 Th idpo tandt rap e z o ida lru l e s....................... 3 8 2 . 6 Compa r i s ono fth e thod s ........................... 4 3 2.7 Predictor-corrector methods . . . ........................ 4 8 2 . 8 T run c a t i one r rands t eps i z e.......................... 5 0 2.9 Controlling the step size . . . . . ........................ 5 4 2 . 1 0Ca s es tudy :R o c k e tt oth emoon . ....................... 6 0 2 . 1 1M ap l ep g ram sf o rth et e z o l e .................... 6 5 2 . 1 1 . 1 Ex amp l e :Compu t ingth ec o s efun c t i on . .............. 6 7 2 . 1 1 . 2 Ex l e :Th emoonro c k e tinon ed im s i ............ 6 8 2 . 1 2Th eb i gl e a gu e s.................................. 6 9 2 . 1 3L a g rang eandAdam o rmu l a s ......................... 7 4
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4 CONTENTS 3 Numerical linear algebra 81 3.1 Vector spaces and linear mappings . ...................... 8 1 3 . 2 L in e a rsy s t em s .................................. 8 6 3 . 3 Bu i ld ingb l o c k sf o rth el e a requa t i ons o lv e r ................. 9 2 3 . 4 H owb i gi sz e ro ? ................................. 9 7 3 . 5 Op e ra t i onc oun t ................................. 1 0 2 3 . 6 T s c ramb l eth ee g g s ............................. 1 0 5 3.7 Eigenvalues and eigenvectors of matrices . . . ................. 1 0 8 3.8 The orthogonal matrices of Jacobi . 1 1 2 3 . 9 Con v e rg en c eo fth eJa c ob im e thod . 1 1 5 3.10 Corbat´o’s idea and the implementation of the Jacobi algorithm . . . . . . . 118 3.11 Getting it together . . . . . . . . ........................ 1 2 2 3 . 1 2R a rk s...................................... 1 2 4
Background image of page 4
Chapter 1 Differential and Difference Equations 1.1 Introduction In this chapter we are going to study differential equations, with particular emphasis on how to solve them with computers. We assume that the reader has previously met differential equations, so we’re going to review the most basic facts about them rather quickly. A differential equation is an equation in an unknown function, say y ( x ), where the equation contains various derivatives of y and various known functions of x . The problem is to “find” the unknown function. The order of a differential equation is the order of the highest derivative that appears in it. Here’s an easy equation of first order: y 0 ( x )=0 . (1.1.1) The unknown function is y ( x ) = constant, so we have solved the given equation (1.1.1). The next one is a little harder: y 0 ( x )=2 y ( x ) . (1.1.2) A solution will, now doubt, arrive after a bit of thought, namely y ( x )= e 2 x .Bu t ,i f y ( x ) is a solution of (1.1.2), then so is 10 y ( x ), or 49 . 6 y ( x ), or in fact cy ( x ) for any constant c . Hence y = ce 2 x is a solution of (1.1.2). Are there any other solutions? No there aren’t, because if y is any function that satisfies (1.1.2) then ( ye - 2 x ) 0 = e - 2 x ( y 0 - 2 y , (1.1.3) and so - 2 x must be a constant, C .
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/01/2011 for the course CHBE 2120 taught by Professor Gallivan during the Spring '07 term at Georgia Institute of Technology.

Page1 / 125

Lectures on Numerical Analysis - Lectures on Numerical...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online