{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

hw-13-sec-15.5-solns

# hw-13-sec-15.5-solns - ﬂ 384 CHAPTER 15 PARTIAL...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ﬂ. 384 CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14 2 2 _ 2 _ (b) For (93,31) ¢ (0,0), fw(x,y) = W— _ w. If we approach (0 0) along the y- -axis, then 3 1 fx(m,y) = fz(0,y) = g; = a, so f¢(:c,y) ——» :too as (any) ——> (0,0). Thus (x \$130 O)fr(av,y) does not exist and f (x, y) is not continuous at (0,0). Similarly f (x y): W = M for (as y) ¢ (0 0) and g It 7 y (332 +y2)2 (\$2 +y2)2 7 7 9 )(X/\ 3 if we approach (0, 0) along the 3:- —axis, then fy (33 y): f\$(x, 0) = % = 313—. Thus ( l)irn(0 0) fy (93,11) does not exist and Ivy —4> , \ fy(x, y) is not continuous at (0,0). 15.5 The Chain Rule ET 14.5 dz 8zd\$ 82d 2 2 - t @z—r +y +xy, m—smt, y—e :> dt _8m dt +8’ydt: (2x+y)cost+(2y+m)e 2. z 2 605(1: +4y), m = 5t4, y = 1/t :> Eli — Qz—gﬁ gig- ._ 3 _ - _ #2 dt f 82: dt + 8y dt — sinks +4y)(1)(20t )+[ Sln(x+4y)(4)]( t ) 4 . 4 . . : —20t3 s1n(a: + 4y) + t—2— s1n(a: + 4y) = (i5 — 20t3> s1n(m + 4y) =x/1+x2+y2, x=lnt, yzcost => dz 82 d3: 82 dy 1 2 2 —1/2 1 1 2 2 _1/2 . 1 5c _._:————— ____:_ 2 __ __ _ : _— dt 8mdt+6ydt 2mm +y> (ac) t+2(1+w +y) (2y)( Sm) 1+m2+y ( ysint) 4. z = tan’1(y/x),cc = 623; = 1 — 6—15 => dz_8zdm 8zd_y' 1 _ _2 t _t dt'ax dt+8ydt_1+(y/x)2( W ) e +1+(y/x)2(1/x) (e X 1) _ y .t __1_.. 4—H x2+y2 e +x+y2/a§ e _ 3324—112 5.w=:cey/z \$2t2,y=1~t, z=1+2t => 5 dw 8w dac 8w dy 8w dz y/ 1 y 31: 2mg __:____ ____ _= z 2 y/2 _ y/z __ _ : y/z _____ dt 8x dt+8ydt+8zdt e H” z ( 1H” ( 2) 2 6 2t 6. w : lnx/av2 +y2+z2 = %1n(w2 +y2 +z2),m=sint,y =cost,z=tant => ﬂ[email protected]_g£+ggd_y+gtﬂd_z:l‘ 23: ~Cost+l- 2’5] ~(—sint)+l ____2—Z———-seczt dt ‘83: dt 8ydt 82 dt 2 m2+y2+22 2 m2+y2+z2 2 iv2+yz+z2 mcost — ysint +zsec2t ___’____—————— \$2+y2+22 @zzmzys, xzscost, yzssint :> 8z 82 83: + 93% 22mg3 cost-kiln:2 y2 sint 82:8E—8-s 8y85 82 82 8x 82 8y 3 . 2 2 3 . 2 2 t __ _ _____ ﬂ _ _ 3 cos 8t 8:1: 8t +— 8y 8t :(233y )( ss1nt)+(3m y )(5 cos t) 232:3; smt+ SCI? 1! C 385 SECTION 15.5 THE CHAIN RULE ET SECTION 14.5 )m—52+t2,y=1—25t :> s'zsamSinCE" y 62 az 81: 3281/ 25+2t ,=———+—-—: 1 2+ 1.-2t= as 82368 (93433 1—(135— y)2() s x/1(:nvy)2( )( ) x/l—(mwy)2 62: 82: 83C 32 (9y 2s+2t ,=’——+——= 1) 2t+ 1 —2 = w éhat Byw 1—m—-yv( ¢1-a— yP( ) ” Ml—m—yv 5? 2 2 i 9_z=sin0cos¢, 9:315, ¢=5t => g—:=%E%:+ +%Qﬂ=(0056 cos¢>)(t2—)+( sin05in¢)(2st)=t2c050cos¢—23tsin6 sind) azfazgg __8_Z____ _. . 2_ _2, _ .5? _ 66 at + 59¢ at— (cos6cos¢)(2st)+( sm651n¢)(s )—23tc0s6cosd> s sm0 smqb 1o.z=e1+2y, m=8/t, y=t/8 => 62_QZ_Q£ 828y_ z+2y z+2y _ —2 _ 111211 3—9: as#a\$ 83+ay 3 e )(1/t)+(2e )( t8 )._6 t 82 Qf _ 25% ‘91 ay__1+2y —2 261+2y _ z+2y 2_ _S_ @z=ercose, Tzst’ 0:1/32+t2 : 82 8261" 8280 — 6t+T—'6-l 2“24/22 2111 9-1-9. 6 cos e( s1n ) 2(s ) (s) e cos 8 sm 52 t2 EZEE+wm = J (t cos (9 — 3 sin 6) \/ 32 + t2 t e TCOSO' 5+6 ~Slnf} 1 5 +t2 1/ 2t —58 (:Ose'e Sl!19-—————— T( > 22( )— ( ) /'——'_'_52+ 2 a=5a+wa t =er<scos0— #81110) 1/82+t2 12. z : tan(u/v), u = 23 + 315, 11 2 33 — 2t 6: _ 52 a” + 9&92 = 5602(u/v)(1/v) . 2 + sec2(u/v)(—uu—2) -3 ¢ “%\$ 81183 f 2 2 2 £11 2(11 _ 212—311 2 u — 1) sec (1)) 112 sec 12)— 112 sec (1)) 95 62 0U+QEQE=seC2 (u/v)(1/v) 3+sec2(u/v)(—uv 2)- (— 2) = 2))— sec2 (3) + 22 sec2 (2) = 2n + 31) sec2 (2) v2 1) 112 v 3) = 7. By the Chain Rule (2), 13. Whent:3,x:g(3) =2andy:h( a aﬂm+ww nanma>[email protected]+v&v®=m E_8xdt aydt 14. By the Chain Rule (3), 96% 2 373218513 + 1811/ gig W5(1,0) : Fu(u(1>0)3v(170)) ”3(170) + F‘U(u(110)1v(170)) vs(170) : : m2, 3)u5(1, 0) + m2, 3)v5(1,0) =PUP\$+WM®=W SECTION 15.5 THE CHAIN RULE ET SECTION 14.5 w = 11138.0, 7" = Way). 8 = 803.21), t = My) => w 19. //\\ @[email protected]@[email protected]@ @ﬂ[email protected],@& W&+mw 8m — 87" 83: 83 8:17 815 8313’ 8y _ 8?" 8y 8s 8y 8t 8y r 5 /\ x/y 3‘ Y x y 20 t t : f(u7v7w)’ u : 114(1), q) T, s), v I 'U(p7 q7 7‘7 s)? w : w(p? q? r, s) : /\\ 8:__8_t_81_L+_8l8_v+ 8t8w 8t__8t_81£+8382+_8_t8__w " W 8p d 8u 8p 8118p 811) 8p’ 8q 8a 8g 81) 8g 8w 8q ﬁ_ﬂ@+ia+ﬂ@za_ﬂ@+ﬁ@+mm 8r'8u87“ 81187“ 8w8r’8s’8u8s 8v85 8w8s @zzx2+xy3 mzuv2+w , y=u+vew => Qg_ 1283: 9319-3;— 3 8n :82: an + ay au — (2TH! )(v2 )+ (3mg 2,)(1) Es: / ” Es / Es / 52 _ 82 81 + 82 821- (23,“, 3)(2uv)+(3xy )(6 w), 22: 82 8m 82 8y_ 3 2 w — 812810 + 8y w —(2ac+y )(3w 2)4—(3333; )(ve ). Whenu=2,v= 1, andw =0,wehavem = 2,y=3, +(54)(1) —— 85, i— — (31) (4) + (54)(1)— — 178, .3713: (31)(0) + (54)(1)— — 54. so —— —+(31)(1). a WNW. 0..., " W ‘“M‘VW‘Wmo-wwwmum-Mm..w. 22. u=(7"2+52)1/2, r:y+\$cost, s:x+ysint => 811 8u 81" + 8U 85 -— £03 + 32)’1/2(2T)(Cost) + 12‘0“? + 82)—1/2(2\$)(1) = (rcost+ s)/\/7"2 + 32, 8;- 8r8ac 8583: a“ a“ 6" + a“ 85 — go? + 52)_1/2(2r)(1) + go"? + 52)-1/2(2s)(smt) = (7" + ssint)/W, (Ty 81" 8y 8s 8y 8 8 8 8 — ' u u T u 85 = a1? + s2)"1/2(2r)(——z sint) + %(T2 + \$2)'1/2(23)(ycost) : W51. Ezﬁﬁ+wm Whenm:1,y:2,andt=0wehaveT=3ands=1 50%;: %,Z 23. R=1n(u2+v2+w2), u=as+2y, v=2\$——y, w=2my => 8R 8R8u+ﬂﬂ+81283_ 82: 811,833 811 82: 8112830 _ u2+v2+w2 _2u+4v+4wy _ u2+v2+w2 ’ 813 _ 813% 8R8v +85% _ Zn (3+ 21) (_1)+ 211) (213) 8y—8u8y 81183; 8uI8y—u2+vZ+w2 u2+v2+w2 ”LR—#12244112 __4u—2v+4wac — u2+v2+w2 Whenmr—y:1wehaveu=3wz1,andw=2,s0(—9§—=9—andQE:g m 7 y 7 387 l l t SECTION 15.5 THE CHAIN RULE ET SECTION 14.5 [3 389 2 = 355%, so let F(m,y, z) : 0:2 + y2 + z2 — 3xyz = 0. Then by Equations 7 :3; 3+2?” ‘ F 22: .- 3yz Syz —— 2m 82 Pg 2y — 3932 303.2 — 2y 8: i='/—:/ and ——::-—-——::—- :__—————_ E = ’ F; 2z .— 3353; 22 — 3mg 8y F2 22 —— 3mg 2z — 3mg n‘I”;geosutpyl'z). LetF(a:,y,z) =myz—cos(:v+y+z) :0, so 82 E, 9:2 + sin(z + y + z) yz+sin(a:+y+z) - ~—/ and ——._————:- . ' ’1 F2 xy+81n(tc+y+z) 6y F; \$y+SIn(m+y+z) 8:1: ®,zzarctan(yz),soletF(m,y,z)=cc—z—arctan(yz)=0.Then 82_,_F1N__,_,,1.._—#_li22: 5;- F2” 1 ”1+y+y2z2 .1# 1 z T 2(2) 22 §i__&___,1_:1ﬂ,_a-,_gﬂi__-_,z,f 8y F2 _ _ 1 1+y222+y 1+y+y2z2 1 2(9) /—- 1+(yz) 1+sz2 34.1,; = 111(2: + z), so let F(a:,y, z) = yz — ln(\$ + z) = 0. Then 1 (1 gangsﬂzfef and gang" 2 “gem. 6m- Fz y— 1 (1) y(:c+z)—1 6y Fz y— 1 y(a:+z)—1 \$+z w+z dT ade+§_T_dy After 35. Since a: and y are each functions oft, T (:5, y) is a function of t, so by the Chain Rule, —d—t— : 3:13 dt 8y dt dw 1 3seconds,m=\/1+t=\/1+ =2, =2+lt=2+l3 =3,——= = -, y 3 3” dt 2./1‘+"t 2 1+3 4 461) + 3%) z 2. Thus the temperature is rising at a rate of 2°C/s. dT da: dy Th — : ~ — = en T423) dt +T.,(2,3) dt rainfall remains constant) causes a decrease in 36. (a) Since 8W/6T is negative, a rise in average temperature (while annual wheat production at the current production levels. Since 6W/8R is positive, an increase in annual rainfall (while the average temperature remains constant) causes an increase in wheat production. 5 rising at a rate of 0.15°C/ year, we know that dT/dt = 0.15. Since rainfall is\ (b) Since the average temperature 1 r, we know dR/dt = ~—O,1. Then, by the Chain Rule, decreasing at a rate of 0.1 cm/ yea dW 8W dT 8—W— 515 : (—2) (0.15) + (SEX—0.1) = ~1.1. Thus we estimate that wheat production will decrease 7‘36! dt 6R dt at a rate of 1.1 units /year. + 0.00029T3 + 0016]), so 93% = 4.6 — 0.11T + 0.00087T2 and 3% 2 0.016. t = 20 minutes, so 37. C = 1449.2 + 4.6T — 0.055T2 According to the graph, the diver is experiencing a temperature of approximately 125°C at 6 . . —C— : 4.6 # 01102.5) + 0.00087 (12.5)2 m .36. By sketching tangent lines att = 20 to the graphs given, we estimate 6T dB 1 dT 1 . d0_60dT BCdDN 1 1 N N — and—— N —I6.Then,by the ChamRule, dt N M dt + 8D dt N (3.36)(—w) + (0016)“) N —0.33. 71? 2 dt r is decreasing at a rate of approximately 0. Thus the speed of sound experienced by the dive 33 m/ 5 per minute. 7"" 390 CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14 \$6 C l g“ g dV (9V dr 6V dh 27rrh — 2 — : —— ———- = 38. V —7rr h/3,so dt 87" dt + 8h dt 3 2 1.8 + 1992.5) = 20,1607r — 12,0007r = 8160a in3/s. @(a) V = Ewh, so by the Chain Rule, dV anEIBdelanh_ cw dw dh_ _ 3 H?‘ 86 dt ‘ 6w dt ' 8h dt whdtHh dt +11“ dt ’2’2’2+1'2'2+1‘2'(”3)Jim/5' (b) S = 2(611) + 6h + wh), so by the Chain Rule, dS 68012 as dw as dh dﬂ dw dh __ : ____ ____ _____ : 2 _ _ __ dt 86 dt + 8w dt + ah dt (“’HL) dt ”(Hm dt ”(”1” dt = 2(2 + 2)2 + 2(1 + 2)2 + 2(1 + 2)(—3) = 10 mZ/s (c) L2 = 112 +213 + h2 2 2L315 : Milg +2wg—7ﬂ +2hd—h— : 2(1)(2) +2(2)(2) + 2(2)(~3) = 0 => dt dt dt dt dL/dtzOm/s. v 40. I _ E => 1 d1 aIdV 61dR ldV VdR 1dV [dB 1 008 ~ In — EVE + \$35 — an — ﬁat— — m ’ an — "mm-01) “ Z0_0(0‘03) — ”(J-”0003”“ dP dT T dV 8.31 dT T dP 41. E # 0.05, E — 0.15, V — 8.31? and E # —P————t- — 8'31EE' Thus whenP — 20 andT — 320, dV _ 0.15 (0.05)(320) N dt —8.31[ 20 400 N 0.27L/s. 'et 90 and y be the respective distances of car A and car B from the intersection and let 2 be the distance between the two cars. Then dz/dt = —90, dy/dt = —80 and 22 = x2 + 3,2. When x = 0.3 and y = 0.4, 2 = \/0.2 = 0.5 and 22 (dz/dt) = 2x (dm/dt) + 2y (dy/dt) or dz/dt = O.6(—90) + 0.8(—80) = —118 km/h. 43. Let x be the length of the ﬁrst side of the triangle and y the length of the second side. The area A of the triangle is given by A = émy sin 0 where 6 is the angle between the two sides. Thus A is a function of w, y, and 0, and ac, y, and 0 are each in turn functions of time t. We are given that (fl—C: 2 3, % = —2, and because A is constant, til—:1 : 0. By the Chain Rule, dA 6A doc 8A dy 8A d6 (M 1 . dm 1 , dy 1 d6 .__:__ __ __ _:_ r— _. .__ _ ..__, :20, :30, dt 8x dt + 8y dt + 86 dt :’ dt 23’5“ dt + 2”” dt + Moose dt Whe” y and 9 = 7r/6 we have 1 - 7r 1 . 7r 1 71' d6 0 : 5(30)(sm g)(3) + 5(20)(sm g)(—2) + 5(20)(3O) (cos g) a _ «3 d0 d0 — . l _ . l . ._ . __ 2 E _ _45 2 20 2+300 2 dt 2+150¢§dt . d9 . d6 —25/2 1 . . . Solvm for — 1ves — = = - , so the an 1e between the Sides lS decreasm at a rate of g dig dt ism/:3 12\/§ g g 1/(12 \/§) m 0.048 rad/s. ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern