Tutorial on Trigonometric Functions

# Tutorial on Trigonometric Functions - Tutor on Tri rial...

This preview shows pages 1–3. Sign up to view the full content.

Definitio Draw a u contain x at R. The the length Values at Bounds |sin(x)| |cos(x) |sec(x)| |csc(x)| ons of Trigo unit circle w x radians (tha en OR = cos hs are positi t special ang x 0 π /6 π /4 1 π /3 S π /2 2 π /3 S 3 π /4 1 5 π /6 π <= 1, | <= 1, >= 1, >= 1. Tutor onometric F with center O at is, the arc s(x) and RQ ve. If they a gles: sin(x) c 0 1/2 Sq 1/Sqrt(2) 1/ Sqrt(3)/2 1 Sqrt(3)//2 1/Sqrt(2) -1 1/2 -S 0 rial on Tri unctions O. Let a cent PQ has leng Q = sin(x). If are down or t cos(x) t 1 qrt(3)/2 1/ Sqrt(2) 1/2 S 0 -1/2 -S /Sqrt(2) Sqrt(3)/2 -1/ -1 igonometri tral angle w gth x). Drop f those direc to the left, th tan(x) c 0 Sqrt(3) Sq 1 Sqrt(3) 1/S --- Sqrt(3) -1/ -1 /Sqrt(3) -S 0 ic Functio ith initial si a perpendic cted line seg he lengths ar ot(x) se --- qrt(3) 2/S 1 Sq Sqrt(3) 0 Sqrt(3) -1 -S Sqrt(3) -2/S --- ns de OP and t cular from Q gments are u re negative. ec(x) cs 1 Sqrt(3) qrt(2) S 2 2/S --- -2 2/S Sqrt(2) S Sqrt(3) -1 terminal side to OP meet up or to the sc(x) --- 2 Sqrt(2) Sqrt(3) 1 Sqrt(3) Sqrt(2) 2 --- e OQ ting it right,

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Identities sec(x) = 1/cos(x), csc(x) = 1/sin(x), cot(x) = 1/tan(x), tan(x) = sin(x)/cos(x), cot(x) = cos(x)/sin(x). sin(-x) = -sin(x),
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 5

Tutorial on Trigonometric Functions - Tutor on Tri rial...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online