1211s3

# 1211s3 - THE UNIVERSITY OF HONG KONG DEPARTMENT OF...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH1211 Multivariable Calculus 2010-11 First Semester: Assignment 3 1. (a) By direct computation, we obtain: ∂f ∂x = 3 e 3 x +4 y sin(5 z ); ∂f ∂y = 4 e 3 x +4 y sin(5 z ); ∂f ∂z = 5 e 3 x +4 y cos(5 z ); ∂ 2 f ∂x 2 = 9 e 3 x +4 y sin(5 z ); ∂ 2 f ∂y 2 = 16 e 3 x +4 y sin(5 z ); ∂ 2 f ∂z 2 =- 25 e 3 x +4 y sin(5 z ) . It is direct to verify that ∂ 2 f ∂x 2 + ∂ 2 f ∂y 2 + ∂ 2 f ∂z 2 = 0. This indicates that f is harmonic in all of R 3 . (b) Let g ( x,y,z ) = f ( ax + by,cz ) = f ( u,v ), i.e., u = u ( x,y,z ) = ax + by, v = v ( x,y,z ) = cz . Applying chain rule, we have ∂g ∂x = ∂f ∂u ∂u ∂x + ∂f ∂v ∂v ∂x = ∂f ∂u a + ∂f ∂v 0 = a ∂f ∂u , ∂ 2 g ∂x 2 = ∂ ∂u a ∂f ∂u ∂u ∂x + ∂ ∂v a ∂f ∂u ∂v ∂x = a ∂ 2 f ∂u 2 a + a ∂ 2 f ∂v∂u 0 = a 2 ∂ 2 f ∂u 2 . Similarly, we have ∂ 2 g ∂y 2 = b 2 ∂ 2 f ∂u 2 . Also, ∂g ∂z = ∂f ∂u ∂u ∂z + ∂f ∂v ∂v ∂z = ∂u ∂z 0 + ∂f ∂v c = c ∂f ∂v , ∂ 2 g ∂z 2 = ∂ ∂u c ∂f ∂v ∂u ∂z + ∂ ∂v c ∂f ∂v ∂v ∂z = c ∂ 2 f ∂u∂v 0 + c ∂ 2 f ∂v 2 c = c 2 ∂ 2 f ∂v 2 . Since f is harmonic, it follows that ∂ 2 f ∂u 2 + ∂ 2 f ∂v 2 = 0. So if we want g to be harmonic, we need: 0 = ∂ 2 g ∂x 2 + ∂ 2 g ∂y 2 + ∂ 2 g ∂z 2 = ( a 2 + b 2 ) ∂ 2 f ∂u 2 + c 2 ∂ 2 f ∂v 2 = ( a 2 + b 2- c 2 ) ∂ 2 f ∂u 2 + c 2 ∂ 2 f ∂u 2 + ∂ 2 f ∂v 2 = ( a 2 + b 2- c 2 ) ∂ 2 f ∂u 2 , 1 which means either a 2 + b 2 = c 2 or ∂ 2 f ∂u 2 = 0. 2. ∂z ∂r = ∂z ∂x ∂x ∂r + ∂z ∂y ∂y ∂r = ∂z ∂x cos θ + ∂z ∂y sin θ, ∂z ∂θ = ∂z ∂x ∂x ∂θ + ∂z ∂y ∂y ∂θ =- r ∂z ∂x sin θ + r ∂z ∂y cos θ....
View Full Document

{[ snackBarMessage ]}

### Page1 / 5

1211s3 - THE UNIVERSITY OF HONG KONG DEPARTMENT OF...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online