Tutorial3_sol

# Tutorial3_sol - MATH1211/10-11(1/Tu3sol s Department of...

This preview shows pages 1–2. Sign up to view the full content.

MATH1211/10-11(1)/Tu3sol s Department of Mathematics, The University of Hong Kong MATH1211 Multivariable Calculus (2010–2011, First semester) Brief Solution to Tutorial 3 Note : 1. fg = e xy x sin2 y . D ( fg ) = £ (1 + xy ) e xy sin2 y xe xy ( x sin2 y + 2cos2 y ) / . On the other hand, g Df + f Dg = x sin2 y £ ye xy xe xy / + e xy £ sin2 y 2 x cos2 y / = £ (1 + xy ) e xy sin2 y xe xy ( x sin2 y + 2cos2 y ) / . Also, f ( x,y ) g ( x,y ) = e xy x sin2 y , D ± f g = xye xy sin2 y - e xy sin2 y x 2 sin 2 2 y x 2 e xy sin2 y - 2 xe xy cos2 y x 2 sin 2 2 y , and g Df - f Dg g 2 = x sin2 y £ ye xy xe xy / - e xy £ sin2 y 2 x cos2 y / x 2 sin 2 2 y = xye xy sin2 y - e xy sin2 y x 2 sin 2 2 y x 2 e xy sin2 y - 2 xe xy cos2 y x 2 sin 2 2 y . 2. F x = 3 x 2 y 2 - 2 yz 4 + ze xz , F y = 2 x 3 y - 2 xz 4 , F z = - 8 xyz 3 + xe xz . (a) F xx = ∂F x ∂x = 6 xy 2 + z 2 e xz , F yy = ∂F y ∂y = 2 x 3 , F zz = ∂F z ∂z = - 24 xyz 2 + x 2 e xz . (b)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

Tutorial3_sol - MATH1211/10-11(1/Tu3sol s Department of...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online