line_integrals

Line_integrals - MIT OpenCourseWare http/ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
V11. Line Integrals in Space 1. Curves in space. In order to generalize to three-space our earlier work with line integrals in the plane, we begin by recalling the relevant facts about parametrized space curves. In 3-space, a vector function of one variable is given as It is called continuous or differentiable or continuously differentiable if respec- tively x(t), y(t), and z(t) all have the corresponding property. By placing the vector so that its tail is at the origin, its head moves along a curve C as t varies. This curve can be described therefore either by its position vector function (I), or by the three parametric equations The curves we will deal with will be finite, connected, and piecewise smooth; this means that they have finite length, they consist of one piece, and they can be subdivided into a finite number of smaller pieces, each of which is given as the position vector of a continuously differentiable function (i.e., one whose derivative is continuous). In addition, the curves will be oriented, or directed, meaning that an arrow has been placed on them to indicate which direction is considered to be the positive one. The curve is called closed if a point P moving on it always in the positive direction ultimately returns to its starting position, as in the accompanying picture.
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/04/2011 for the course MATH 18.02 taught by Professor Auroux during the Spring '08 term at MIT.

Page1 / 5

Line_integrals - MIT OpenCourseWare http/ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online