matrices_algebra

matrices_algebra - MIT OpenCourseWare http:/ocw.mit.edu...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
M. Matrices and Linear Algebra 1. Matrix algebra. In section D we calculated the determinants of square arrays of numbers. Such arrays are important in mathematics and its applications; they are called matrices. In general, they need not be square, only rectangular. A rectangular array of numbers having m rows and n columns is called an m x n matrix. The number in the i-th row and j-th column (where 1 5 i 5 m, 1 5 j 5 n) is called the ij-entry, and denoted aij; the matrix itself is denoted by A, or sometimes by (aij). Two matrices of the same size are equal if corresponding entries are equal. Two special kinds of matrices are the row-vectors: the 1 x n matrices (al, az, . . . , a,); and the column vectors: the m x 1matrices consisting of a column of m numbers. From now on, row-vectors or column-vectors will be indicated by boldface small letters; when writing them by hand, put an arrow over the symbol. Matrix operations There are four basic operations which produce new matrices from old. 1. Scalar multiplication: Multiply each entry by c : cA = (caij) 2. Matrix addition: Add the corresponding entries: A + B = (aij + bij); the two matrices must have the same number of rows and the same number of columns. 3. Transposition: The transpose of the m x n matrix A is the n x m matrix obtained by making the rows of A the columns of the new matrix. Common notations for the transpose are AT and A'; using the first we can write its definition as AT = (aji). If the matrix A is square, you can think of AT as the matrix obtained by flipping A over around its main diagonal. 2 -3 15 Example 1.1 Let A = . FindA+B, AT, 2A-3B.
Background image of page 2
2 18.02 NOTES 4. Matrix multiplication This is the most important operation. Schematically, we have mxn nxp mxP The essential points are: 1. For the multiplication to be defined, A must have as many columns as B has rows; 2. The ij-th entry of the product matrix C is the dot product of the i-th row of A with the j-th column of B. The two most important types of multiplication, for multivariable calculus and differential equations, are: 1. AB, where A and B are two square matrices of the same size - these can always be multiplied; Ab, where A is a square n x n matrix, and b is a column n-vector. Laws and properties of matrix multiplication M-1. A(B + C) = AB + AC, (A + B)C = AC + BC distributive laws M-2. (AB)C = A(BC); (cA) B = c(AB). associative laws In both cases, the matrices must have compatible dimensions. M-3. Let I3 = ; then AI = A and IA = A for any 3 x 3 matrix. I is called the identity matrix of order 3. There is an analogously defined square identity matrix Inof any order n, obeying the same multiplication laws. M-4. In general, for two square nxn matrices A and B, AB # BA: matrix multiplication is not commutative. (There are a few important exceptions, but they are very special - for example, the equality AI = IA where I is the identity matrix.) M-5. For two square n x n matrices A and B, we have the determinant law: lABl = IAIJBI,
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 11

matrices_algebra - MIT OpenCourseWare http:/ocw.mit.edu...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online