binary-evolution-part2

binary-evolution-part2 - _ 8 On April 5, 2011 Fill be the...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: _ 8 On April 5, 2011 Fill be the same as the first exam iéentrate on the material since the last exam ‘ ""g the lectures on the Sun). NASA, NOAO, ESAand The Hubble Heritage Team (STScI/ Binary Evolution (Kulner, Ch. 12; see also Shu, Ch. 10) AST 203 (Spring 2011) Binary Evolution Very complicated system. Both disk and central star exhibit activity Hot spot can form where the mass transfer stream intersects the disk. (ouvcid '2 KNBH 'v pyma) If the compact object is a... White dwarf: novae and Type la supernovae can result. Neutron star: X-ray bursts can result. Black hole: we may see X-ray emission from the accretion disk. We'll consider each of these in turn. AST 203 (Spring 2011) Why Can Degenerate Environments Explode? Degenerate gas —> pressure is not very temperature sensitive Dump energy into star —> T increases —> reactions proceed more vigorously (very T sensitive) —> T increases further In a normal star, the T increase will lead to a P increase, and the star would expand, quenching the reactions In a degenerate star, the T increase doesn't change P, so the star does not response. Enormous amounts of energy dumped into star —> explosion. AST 203 (Spring 2011) Novae Nova: Thermonuclear explosion of the accreted surface layers on a white dwarf in a binary system with a giant (or AGB) star. Second star moves up the giant branch or AGB Overflows its Roche lobe —> mass flows onto the white dwarf. Typically, 10'9 to 10'8 Melyear is transferred. Mostly H, with some He, C, and other metals. A disk forms and accretes onto the white dwarf. How the material spreads across the surface is not fully understood (especially if magnetic fields are present) Gradually a layer of mostly H builds up on the WD surface. AST 203 (Spring 2011) Novae Q ~ 109 — 1010 while dwarf CUT'IIPaIiiUllSldf cm/s2 Enormous pressures at the base. “SEE// Base of layer is dense and hot. Hymngewgmgasspim into an accretion disk and forms a shell ol hydrogen T increases as more material piles onmwhmwm on. When T ~ 107 K, CNO reactions release energy into the accreted envelope. 0 Because it is partially degenerate, a thermonuclear runaway will result. the shell becomes hot enough tor a twist of hydrogen fusion. cwyrg—fil @2004 “amen Eummn owier-ng an MD sanwailny. (from Bennett at al.) AST 203 (Spring 2011) Nova Heat release lifts the degeneracy and the envelope expands. Luminosity gets very high. Recurring Nova T Pyxidis HST . WFPC2 PRC97»29 - ST SCI 0P0 - September 18. 1997 M. Shara and R. Vlfilliams (ST SCI). R. Gilmozzi (E80) and NASA ~40 nova happen each year in our galaxy. Some recur, with a period of decades. AST 203 (Spring 2011) Classical Nova (F. Paresce, R. Jedrzejewski (STScl), NASA/ESA) Nova Cygni 1992 (exploded on Feb. 19, 1992) imaged in 1994. AST 203 (Spring 2011) Novae At peak brightness, a nova can have a luminosity of 105 LO. A fast nova, the brightness drops 2 magnitudes in just a few weeks. A slow nova takes 100 days or more to falJlog 2the same amount. 650 660 670 680 690 700 7|O 720 730 740 750 I Visual 0 Photographic x Photoelectric --' CP Puppis 3 mmqmmwa—<O 5 (Young, COIWiI'I, Bryan, and De Vaucouleurs) AST 203 (Spring 2011) A Note About Gravitational Potential Energy Gravitational potential energy between two point masses: U 2 _ Gmlmg 74 For a spherical mass distribution, we add up (integrate) the gravitational potential energy between all particles: GM2 Uz—a R where a is ~ 1. For a layer of mass AM on the surface of a star of mass M)h gravitational potential energy of the layer is: GMJKAM R U:— AST 203 (Spi inc; 2011) Classical Novae (Gehtz et al.) Numerical modeling shows that the runaway occurs when a critical pressure is reached, PM ~ 2 x 1019 erg 0111—3 From hydrostatic equilibrium: dP _ d’r i 0 — Pcm _ _ AM GM Ar 2 pg * 4wR$VDAr R%VD SO GMAM Pcrit N —4 477RWD AST 203 (Spring 2011) Classical Novae (Gehrz et al.) TABLE 1 CLAssic AL Ncn-A WHITE DWARF 4ND OUTBURST CHARACTERISTICS Mam Rm) Mam. £5 £6 L953 1'12“ M 3-01 7mm] 7mm (44.2) (cm) (Mg) (ergs g") (ergs) 011..) 011;.) (44.9. yr") (:0 (yr) f 0.6 . . 95. (8) 1.3 {—3) 84 (16) 2.2 (47) 4.62 (3) 2.28 (4) 6.44 {—8) 2.02 (4) 1.3 (6) 0100 0.7 . . 0 5 (a) 73 (—4) 1 1 (17) 1 5 (47) 103'. (4) 2 55 (4) 1.47 (—7) 4.917 (3) 7.3 (5) 0.053 0.8 . . 7 7 (a) 4 2 (74) 14 (17) 12 (47) 1 54 (4) 3 04 (4) 2 29 (77) 1.33 (3) 4.2 (5) 0.042 0.9 .. 6.9 (8) 2.4 [—4) 1.7 (1?) 0.4 (46) 2.24 (4) 3.42 (4) 313 {—7) 770 2 4(5) 0.040 1.0 .. 6.1 (S) 1.3 [—4) 2.2 (1?) 5.? (46) 2.83 (4) 3.80 (4) 3 95 [—7) 330 12 (5) 0.046 1.1 .. 5.2 (s) 54 (—.<.) 2.8 (17) 3 5 (45) 3.42 (4) 4.117 (4) 477 (—7) 130 5 4 (4) 0.052 12 . 4.4 (a) 2 s (is) 3.5 (17) 2.1 (45) 4.02 (4) 4.55 (4) 5 51 (e7) 50 2 3 (4) 0.100 1.3 .. .. 3.3 (S) 9.0 (—6) 5.3 (1?) 9.4 (45) 4.61 (4) 4.94 (4) 6 43 [—7) 14 9 0(3) 0.230 135 .. 2.7 (s) 4.0 (—5) 5.7 (17) 3.3 (45) 4.91 (4) 5.13 (4) 53:7 (—7) 55 40 (3) 0 320 (from Gehrz et al.) Nova properties assuming M : 10’9 MG yr’1 Higher mass WDs reach ignition conditions with less massive envelopes For a given accretion rate, they can recur on shorter intervals. AST 203 (Spring 2011) Classical Novae (Trumn 1982; Carroll and Ostlie, Ch. 18) H burning produces ~ 5 x 1018 erg g'1 A 10'4 MD envelop can release 1048 erg >> Ebinding Observed integrated luminosity is 1046 erg Only a small fraction of the envelop is burned, or that most of the mass is lost (ejected) during the event. Velocities far from explosion are small—material mayjust escape AST 203 (Spring 2011) Neutron Star Systems What about a system with a neutron star as the compact object. Can we form such a system? A lot of energy is released in a Type II supernova. The neutron star that is formed can be given a strong kick It may be difficult for it to stay bound to its companion. Explosion of a massive star (10s of Me) leaves behind a neutron star remnant of < a few solar masses Explosion drives away about 1/2 of the mass of the system. Only some systems will remain bound. If enough mass is transferred from the massive star to the companion during evolution, the system can remain bound. Or a white dwarf collapses into a neutron star. AST 203 (Spring 2011) Neutron Star Systems Companion overflows Roche lobe —> accretion disk forms —> material spirals onto the neutron star. Strong magnetic fields can disrupt the disk—material funneled onto magnetic poles. Gravitational potential energy released, which is radiated away. The neutron star emits X-rays around the magnetic poles. The emitting region can be periodically eclipsed, resulting in a binary X-ray pulsar. AST 203 (Spring 2011) Neutron Star Systems SOURCE IN HERCULES (201705+34) November 6, 1971 r‘ l l I I I l )i L I ~ III I; I ‘ II .II I fl ;-l,€fl SEC l l (1219 umequeueJ) COUN TS/OO96 SEC 0 L l I I I I I I I _L_ I .J. O ICC 200 500 Fm. timeout. is ma moms second binsfmm Hercules x 1 dunng the chmI 30 seconds 01 a tweet-0nd pus an 1971 Ne» vembcx a The henviercun minimum x251 Ln the ulmucne or I. sane function, In; first an: second Immomce plusa constant, medumed by me triangular response of the 001mm The functional in is systemilicajly below the peak counting rate partly Line In the sharpness of the pulsing and partly due to the minimum 12 Lechm'cuc. Her X-1: brightness fluctuations in X-ray emission are seen with a period of 1.24 s. This is too fast for a white dwarf to be the source. AST 203 (Spring 2011) Neutron Star Systems Neutron stars can accrete H/He from the companion. lf magnetic fields are not too strong, it can spread across surface. Layer builds up —> compresses —> gets very hot at the base. This leads to a runaway called a Type | X-ray burst. Analogous to a nova in the white dwarf system Only a few meters of material are needed to get T high (due to the immense gravitational field of the neutron star). Recurrence times of hours—i.e. the layer builds up, explodes in a flash of X-rays, and then an hour later is ready to explode again. X-ray satellites can see repeated bursts from a single source. AST 203 (Spring 2011) X-ray Bursts 10001. |.lll‘lll..llllll.|. 111.11 Gravity dominates over the energy release—material stays bound to the neutron star. BUG — 600 7 This differs from novae. l l l . . l 7 345 .350 3255 EEO 355 370 .375 380 7 U 7 400 Frequency (HZ) Oscillations in the lightcurve ~ the rotation frequency 200 Ignition is local Burning spreads across 0 ‘ ' ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ neutron star surface. “me (“5 m “"S’ Slrohmayer el al., 1996, ApJ, 469:L9 AST 203 (Spring 2011) XRB Energetics (from Strohmayer & Bildsten 2003) Gravitational energy release per accreted baryon >> thermonuclear burning Burning would be overpowered by accretion unless the fuel is stored and burned in very short bursts Fuel is accreted for hours — days Burned in 10 — 100 seconds ~ 70 XRB sources known (some with > 100 individual bursts— lot's of information from these systems can be built up) AST 203 (Spring 2011) X-ray Bursts Multiple bursts from a single system. iuuw ' NA . o > IL! . (4-K o D- . . t» N \k “I i 1. v-g mun ‘15 . \- x, g . 11v \ N, g irian 1. u ' ‘ "A 1. NM _ whh‘ as,“ m «w 3 mm" - '7 i +'-‘- i v z o 3' am A 3 m E l 000- .4 U1 1 fl ‘5‘ h“ Mk MN 2 nun; "1M Mum k W" ‘ " N. Q "qh W i M w I —e E! nan: _ a. .A U’ l‘ g H mm. J .1st f“ i{ g on - u 1. 1‘ M i ,. \ ax a X‘N‘M r «MW—um. W“"*—.J h "HM J E - 'l I :m‘ . ‘Ilg'g' % I2- ‘I '4'- J'W' HA 11"] fair || ' a, ‘1 I, _ |,_ “u. i3 u. l u . i M 1. ii “p. .1 ; 11 .. 1 - =5 "'rl"r‘¢d-' "11+ Vt Vi .11“ .,, J wwtwm ,i 1 1.9551 c 1.. . . J . . c a in 1r: . 1; 1.1 r, lU :r. i in 'I'- n in 'i H-r- l.~| “u .~ ‘i'rlir M Fig; 3.4. A sample (Ifffl'lli‘ X-i‘l—ly burgh: from lht- LMXB JU 1728 Kai m; rilxs'm‘wd with tho HXI‘EJ i-‘C‘A. Each mqnem‘u shows. from top to huflmm tho tom] 2 7 till an rniultrnteu tho. 2 - {3‘ kW (:11111111'21111. Lin1 fi - 30 kM' t!Olllltl‘flt(‘. Elllll the 1|H1‘d11fi5: raliu {ES - 3f] 319V) 1’ (2 - ti kob']. Bursts: l and ll show clear m-‘idouru for I’HE hmwd on the hard 1105‘: ratio ambition. AST 203 (Spring 2011) Black Hole Systems We cannot observe the black hole directly We can see emission from the accretion disk before it reaches the black hole event horizon. Energy emitted from an accretion disk depends on the gravitational potential energy release. A stellar mass black hole is much smaller than a neutron star —> more gravitational PE released —> emission in X-rays. Some candidate systems have been identified. Variations in X-ray emission on timescales of ms suggests a BH Masses > ~ 3 Me (from the orbital dynamics) rule out NS. AST 203 (Spring 2011) Supernovae Supernovae are exploding stars. Supernova are classified according to their spectra. Type I supernovae—show no hydrogen in their spectrum. Further divided into : Type la (strong Si lines) Type lb (no Si; strong He lines) Type lc (no Si; no He lines) Type II supernovae—strong hydrogen lines in their spectrum. Type lb, lo, and II all have similar origins—massive star explosion. Type la are different—we'll discuss them now AST 203 (Spring 2011) Type la Supernovae Observations (from Hillebrandt and Niemeyer) - Peak L ~ 1043 erg s‘1 — Can be as bright as the host galaxy - No H seen in spectra, but strong Si, Ca, and Fe lines - Occur in old stellar populations - Less frequent than SNe ll SN 1994:) (High-Z SN Search team) - Large amounts of 56Ni produced — Radioactivity powers the lightcurve - No compact remnant SN 1998dh Type la Supernovae Observations Variation in lightcurves can be corrected m WW for. as measured Based on nearby observations SNe la act as standard candles. If we know the intrinsic brightness, and we measure how bright it appears, then an an we can measure the distance. W arr-h," --sHEETJSEHEEL SNe la can be seen at much greater 1-,,“ distances than Cepheids. ' " 1“ g» .. la I‘é In 1998, this led to the discovery that the " expansion rate of the Universe is we , accelerating—more on this later. P,,,,,ps(,993), Perlmutter et al. (1997) Type la Supernovae Observations Distance verse redshift: Penmuner. Physics Todaylzooa) 0.0001 26 l H U I e d m _ 24 V o Supernova Cosmology Project > a 0.001 E j 'HighrZSupem/JVnSearch _ 0.01 22f .Cgii‘ngfli/UHMSMWH '3’“ Distant supernovae 20* ' allow us to determine 01 ‘95 cosmological 1 16; parameters. g “t 22 3:342?“ E 2" 3:55;?“ * 20 ' In 1998, this led to the discovery “2 redsgffl “6 ‘0 that the expansion rate of the . . . . . Universe is accelerating—more on “8 s I W 0-6 °-5 . calea the Universe this later. [relauvezomday'ssca/s] Type la Supernovae 1 Accretion from binary companion. Grows to Mch 2 “Smoldering” phase—central T rises —» flame (David A. Hardy & PPARC) born 3 Flame propagation. Initially subsonic, but detonation transition? 4 Explosion! Lightcurve powered by Nidecay. Width/ SN 1994p (High-Z SN Search luminosity relation. (Roepke and Hillebranm 2005) team) Type la Supernovae Theory The best model for SNe la is the thermonuclear explosion of a carbon/oxygen white dwarf. The Chandrasehkar mass provides the robustness we are looking for. White dwarf accreting from a companion Star is compressed as material piles up on its surface. Central density and temperature increase Carbon burning ignites near the center. Explodes just before reaching the Chandrasekhar mass. (NASA/STScI) Since the star always explodes at ~ same mass, we expect the resulting energy to be the same. Gamma-Ray Bursts - 19603 spy satellites saw bursts of gamma-rays coming from space (not terrestrial thermonuclear explosions) - Lots of initial ideas AST 203 (Spring 2011) AST 203 (Spring 2011) AST 203 (Spring 20. ., 22. 21 32 22. 24. 25 35 37 33. 32 22 21 22. 2a. 24 25. 25. 27. 25 22 122. 121 122 122 124 125 125 127 125 122. 112. 111 112. 112. 114. 115 115 117. 115 5.11... 1'... 2.1.1.... 11.1. 2... 21... Dani»... 12.1. 2.4, 2.4, 1 (1.1.... 1252 2121.... 45. 5475 51- cos 512 .1.... “.11.. ..1... 1. 21.1... K.1..., 2 (21.... 1274 5.1. 127 222 51- cos Ty... 11 52.1.... 5...... (1.-....1 .1.1.11.......1... 2 51.2... .1 .1. 1272 11.1.... 245. 2572 51- 2st 51.11.. .1....2... 1.1.. “may .1.. 4 51.2... .1 .1. 1272 11.1.... 245. 2572 WD DISK 5....2...1.... .1...” WI: 5 11...... .1 .1 1272 5.4. 125. 1.27 115 (12111 DISK )kh. .....1 ...1...1..2 1. ..11... w.11. .14 K..1..1.. 125 5 1...... .1 .1 1272 11.1... 245. 12552 W17 51- DISK 5....1... ..... WD 1.... 11... .. ..m...... 7 1...... .1 .1 1272 11.1.... 245. 2552 115 5-1- DISK mm... .1... 125 1.... 11... 1.. ..1-1.11.1.1... 2 1...... .1 .1 1272 11.1.... 243. 12552 1211 5-1- 2151< .....1... ..... 1211 1.... .1... 1.. ..m....... 2 2...... 1274 5.. 5. 55. 22,111 115 1151.2 115 .1.... ..n.......1 1.. u.-..1,........ 2...... 5.1.2.. 12 0.1.2., .1 .1 1274 5.1. 127 1.22 1151 521. 121.11...- 1.... 2.1.1 3.... ......11... ..1.. ..2....... 11 12...... .1 .1 1274 5.4. 127. 1.27 51- 2st 21...... 1.1.1.. 2... ..1 ....51 2.. 12 5.1.1....1... 1274 5... 5.1.... 12. 222 WD (12111 DISK 2.....1 1...... m1.-. .1.... ..1... Wm 12 5.1.1....1... 1274 5... 5.1.... 12 222 115 (2:111 DISK 2.....1 1...... .,.1....1. .1.... “..1... 115 14 121......» .1 .1 1275 5. 5. 55. 25. 22 51- cos 1.5.2.2.... .1 ..1»... .1....1...1..... 511 1. 12.11.. “..1... 15 121......» .1 .1 1275 5. 5. 55. 25. 22 51- 512 cos 711......1 emunan when .1...11 .1.. 1.....2 1.2 511 .1.... wave 15 12......“ .. .. .1 1275 5.. 5. 55. 25. 22 115 cos 21-1.4 ........ 1...... 115 9.1.4.. 17 1:..... .1 .1 1274 11.1... 251.222 115 DISK 115 .....1.1.1.....1.. .1.... .1....12 1.... ..1...12.w.11. 2122 12 11.2.1... .1 .1 1274 11.1.... 251. 522 W11 cos W11... 11.1. .1.... 25......“ 11..1 11.11.... 1.111. 11.... 12 7...... 1275 .5. ., 44. 21 115 11.1.3 115 .......1.. u.......5..1....,.1........g 2 5. 12 5.1.1. 22 (m............ 1274 5.1. 122 1.75 W17 DISK 2......1... .....1. WD w.11. 1.... 12 11.1.1 .-1... 2... 21 12.4.1... .1 .1 1275 5. 5. 55. 24. 225 5:111 51- cos 2.11.... .1 ..P.......... 5.4, ..1 ....1... .1 ..1... ..1.” 22 11.2.1... .1 .1 1275 5. 5. 55. 25. 221 W11 cos W11 mm. “mm... 11.1...... 1...... cm»... unwnllg 22 17.... .1 .1 1275 11.1.... 255, 112 211 DISK 1.... (1...... ...1 .1..P .. ..gmph... .11... ..1.1..... .....1... 211 24 2.1.... .1 .1 1275 5. 5. 55. 42. 77 115 DISK 115 .....1....1.. .1.... 115 ...1... 25 (-11.1...22... 1275 5. 5. 55. 42. 52 WD DISK 11...“... W2 .215... MED .1....51121... 2.... 25 11.11... 1275 5.4. 222. 122 WD DISK T11......1.....1... 1.... 2... 1.... «2...... WD 27 w...1., .1 .1 1275 11.1.... 252, 121 115 DISK c..1.... 4-....1... 1.... .......2 ...11.. ..1. 125 22 1...... .1 .1 1277 5.1. 117 127 115 DISK 11.S 5......3 .1 ...... 2.1 .......1 115 ..u... ..42... .....1... 22 D1... .1 .1 1277 5.4. 214. 255 211 DISK 1.1.1.511... .. mm... ..1. "5.41. ..1"... 1211 22 11......” 1272 .P 5. 55. 52. 517 m1 521. 21...... ..1-..1..1.1..1 y... ..1... ..1 M. 1....1... .. 21 127.... 1222 55. 5. 57. 124 W17 DISK WD ...r... ....1... 5.....1 ...... .1........1..... 2.... 22 T12... 1222 55.5. 57. 224 115 DISK 125 m1... “..1... 5....1 ..u... .1..m...2.... 11.... 22 15......- .1 .1. 1221 5. 5. 55. 75.122 115 DISK 125 211..."... 1...1 .1... 1. ..1. 2...... .1....1..1.1.. sy..1. ...1 24 11...... .1 .1 1222 ..4. 242. 212 115 .51- 2151< ..1... 1.... 1......11” 1.....- 1.... 115 25 15......7 .1 .1 1222 11.1... 227. 122 115 1151.2 115 .... ...1.. ......4 51 .1.... .......1.... “5...... 25 11.11... .1 .1 1221 5.4. 242. 222 115 551 DISK 5.1.... 1.11.. 115.12.15.14 “1.5.... 1...... ....1.. 1.1.1. 1...: 27 1111.51... .1 .1 1221 5. 5. 55. 77. 452 115 DISK 11.1...... 2.... ...I.2 17y 111112 11.1...... 115 ..1“ 1.2... 22 (1.1.... .1 .1 1221 5.4. 242. 771 115 551- 2st ..1... 1.... 115, 1.2.11. 2.-..-.1.....1,....11.2 .1.... 211.... 22 0.. 2...... 1221 5.1. 142 227 115 551 DISK 5.1..-. ..1... 125 2 5.12 2.....2 1. ...-1... ..11...... 42 15...“... 1222 5.42.1122. 72 11c. 521. 11...... “.51....1... .1 11.1...... 41 11... 1222 ..1252. 271 115 2151c 125 2.... 1.... P... P1...... ...5..21.. 125 m.........1.... 42 w...1., .1 .1 1221 5.1. 152 715 115 DISK 11...... .............. .11.. 115 ...1... 11. a... 42 12.1...11 .1 .1 1221 5.1.152 722 115 DISK 11.1...... ........, .. 115 12....1. 1.1.... 1.1.. 44 11.1......- .1 .1 1222 55.15.111.242 115 DISK . ..1»... “.22... 11 2.... 1.1.2.... 11. 11.1.1. .. 125 m1... 45 11.1..1..- .1 .1 1222 11112.5. 222, 1222 115 2151c 12 ..2...2 .,.I. .-1. ..2 .1.... .1.... ..1 .4. 1... 51.... 45 12......“ a. .1 1221 11.1... 227. 555 115 DISK 1212 11...... .... c...P ..1 1., 1.11.. ....1,... P1...... 47 1.1...- .1 .1 1222 5. 5. 55. 25. 452 115 151.1 DISK 15M 1.1.1... mu... .1 115 «15311513251555 .1.... .14....1» mm... 45 12.... 1222 ..4. 251. 1.71 WD 11.1.3 11......1...... ..11.... .1 Wu ..1. mm... ....1....3 115 42 v...1.... .. .1 1222 11.1.... 221.421 115 52 DISK 115 .....1....1....1...1 m... 1...... ..m....... 52 12.......,.. a. .1 1222 5. 5. 55. 22. 447 115 DISK 11...... ..1. .1......... 1. 115 ....1... v..11. .1.... “2.... 5...... 51 121......» .1 .1 1224 51.5.1... 22. 52 115 DISK 711..-...4... «21...... 1......11. 115 1.2.1... 52 511.... .1 .1 1222 .55.122. 122 115 11.1.3 115 .......1.. 1. .1.... 1...... ,..1.1 5cm ..1..1..... 52 11......7 .1 .1 1222 55. 5. 112 252 115 DISK 2 11.1.1 ...1..... ..1... .. 115 ..1. .11....S 1...... 54 12...-..1. .1 .1 1224 55. 5. 125 22 115 DISK 115 .....1... .... «.1.... ..u... .....11 ...1. 2 .........1... 55 1.11.2.1 1225 5.4. 222. 721 115 DISK 2.-.... 51.1. 1....1... ...1.5.1.1y m... 1.144... mm... 55 1....K 1234 ..4. 222. 1.41 115 2151c 12...... 21.11 .1.... 2...... m...“ 11... .1.... 1... .1.. 57 1....S .1 .1 1224 11.1... 212. 121 115 DISK 115 my... 11.12. 5.1 5.1.1.2. .......1..... ...... 11... 52 1111.51... 1224 \p 5. 55. 125. 245 115 DISK 125 «Manna-211515 m1... 2. mm... 52 5...... 1225 ..4. 221. 222 115 2151c .....1... .m..5.1..y 5...... 115 ....1 41.1. 52 5.1.1....1... .1 .1 1225 11111155 212. 545 115 1151.5) 21.1 115 .. (1.1..-. ..1. “2...... m.....1.. 51 127.... 1224 5. 5. 55. 125 122 115 DISK w... 12 5.12 125 ...1......11y .....1.... 11.-...-” 1...... 52 1.1... 1224 \p 5. 55. 127. 121 115 DISK 125 2.... .521. .1 1......1.. ..m..1.u-...111.1.... ...1.5.1.1y 52 11......3 .1 .1 1225 ..4. 222. 55 115 2151c 11... 1...... -. 5......2 .1.... 12 11...... ..12 .1... .1115 54 15......“ .1 .1 1225 11.1... 214.142 115 DISK 115 +1... m... .1.11.. ..m....... 5.... GRE 1 ..1...1 2.... 55 2.1.1.... .1 .1. 1225 5.4. 221. 155 115 5011 DISK 125 1.2.. 41...... .5...1...5.. 1.11.. 115 1....» 2... 55 112.11.... .1 .1 1225 \p 5. 55. 122. 27 115 11.51.51 12.21.11. unflava 125 57 51......1. 1225 11.1.... 211. 4. 115 2151c 21... 1.. .1.. ...g...1..,.1.... ..1 115 ....I...... .1....3 155.12 52 12..., 1.1.. 1225 5.1. 222 1.12 115 cos 2...... (1112. ..1.. .1 ..1 .11. .1.... ..12... ..2...1.2 52 121......» .1 .1 1225 51.5.1... 22. 522 115 DISK c2... 5...... .1....1...-y .1.... 5.1.11 115 m1... 2...... 511 7 .1...1 .. .1 1225 17121.. 57. 2232 55 55 2151c 512 .1.... .1....5. ....11.....P ...1... mm... 55 ..m...... 7 v.51. .1 .1 1222 .5. ., 227. 55 5-1- 2151< 111......1..11y ..1... .1.11.. .y...... g... .1.11.. 2... 72 12.5.1 a. .1 1227 5.1. 215 1.12 05 cos 2112 ....11 .1....“ ..1.....1 1.... u... .1 ..2... .1....S 72 1.12.. .1 .1 1227 11.1.... 227. 222 115 5011 DISK 02.1 2.22 m... 115 ..n .251... .511 2...... 122...... 74 11.12.... .1 .1 1222 11.1.... 222, 224 15.1.. .5112 cos 2...... 1.1.... ...1... 121. 1... “..1. ...... ..1... 1.... ....1.. a1 I II I Ia-Ray BU rsts (am... 1233 .554. 227. 1.31 WD cos WD ..11...... 5...... 1. r...“ ..w .1... 5.1.1.1. p..1..1... 1.1.1.. 1235 5.4. 225. 255 DISK 2.1x... 11...... .1. ruck-5: 1. 115 mm... GRB 11.11. mum... 12.4....“ .1 .1 1235 5.4. 225. 225 DISK .1 .. .......1... 5, .113... ..1... ..1.......g...1.... «15.11... 135.111 11.1.; 1235 .554. 925. 525 cos Enexgy ..1.....1 1...... ..1... 21...... .1."... 1..~i..d) 1.1.1.5...." .1 .1 1235 11.1.... 225. 124 DISK 55....1... 2.1.... .25...” ..p...1. ..1... “5.... n... 115 1.1.1.. 1235 11.1.... 225. 552 DISK 115 1 mm... 2.1.1. «£551.51. “Flam: GRB .F..1.. 121... .1 .1 1232 5.4. 242 522 DISK 115 ..1”... 2.2.. ..upl. 1. ..1..m...1..... 511... .1.... Tmfimenkn .1. .1 1232 5. 5. 55.152. 1115 W11 cos Kerr-Newman .1.... 1.21.. 5......1. .1 .1. 1232 5.4. 245. 252 NS DISK 115 1211.14 ....1...1... .1..1.... 1.1.1.1. .1.... pan’ ....:.4. 17......” .1 .1. 1235 5.4. 225. 1.71 NS DISK 11....» .1....p1... 1.1.1.... 11.1...... .1..11..12 1.... 2.. NS 1224...... 1232 51. 22. 2222 WI) W11 DISK 21...,- m...1... 1.... p... .1 ..m 111......L1. 1.11. .......y ....11 .1 .1 1232 5.4. 247. 1141 115 (1011 DISK 17.... NS “..1... 11.....1. o..1 .1....1... r... WD 5...... ..1, ..1;..I 1.1.1.. .1 .1 1232 5.4. 245. 273 NS DISK 12......11. .1..1...1..;. ....1 ..2 1:...P ...1 1...... ..1. 1.1.1.13 N5 Tmflmrnkn 1232 .52 5. 55. 152. 321 W11 cos D.11...1.1 1y... 211.211.. “my' 2.1.. ..1. .1211 511113. 151.111.. .1 .1 1232 11.1.... 1.42. 123 NS 115 cos 115 . N5 5...... members ..11..1.. 1.21.... W... .1 .1 1232 PRL. 52. 1552 115 DISK 2,.1. ... 5. 12...... ...1 111. 22. 42 1..\' .. m.g...~....5 NS 51......1.. .. .1 1232 5.4. 244. L1 NS DISK QED n... ........1 ....;1, ..1 115 .1-...5... 1.1.1.. 1222 .554. 251. 521 NS DISK 115 m.2..1.sp1..... 21...... ...111.1..... 11. .1 .1 1222 5.4. 242. 1.25 NS DISK 2...“... 21.....11... neceruar) 1...... m.g..1...4 “.1.... ..1... 1.1;...1... .1 .1 1222 5. 5. 55. 155. 127 NS 0014 DISK 1.1..-.1I.. ..m... p... 11...... a...1 ..1... ....g...1..,.1.... 11...... 1222 .554. 252. 127 NS DISK Cum... “mm... 1.. .1.... NS 1......“ 5.1.1 D1... .1 .1 1222 5.4. 252. 512 NS 1511 DISK 01.4 NS .....5... 1...... ISM. "..1... 5.... "..1... 12.... 11.1.. 1222 5.4. 252. 212 NS NS cos 115.115 .111”... ..u... mum... “11.1...... 4...... 1......212 w..4 2.1.1.51. .. .1 1221 5.4. 255 242 1517. MEIR cos 51.11.2115 .1 11.1......» 5.2.5.5.... 1.1....” by ..1 .. 21....11 1222 11.1.... 1.45. 122 NS (1011 DISK 2.2.15 125 5.115. 11....g1. 11. .1.... o... .1..5 1.211....115 .1 .1 1221 .5. 5. 55. 175. 217 W11 1151.0 W211. 1.21. 1.1.5....“ 5.... ..mu1....5.. 1...... 513...... 1.... 1227.5 11.1.. .1 .1 1221 5.4. 272 1% NS DISK 115 15.11.14 “.21....” "..1... 1......3. ....1...1.. 1.1.2.... 11.1...... .1 .1 1221 5.4. 272. 552 NS DISK 511... waves 1.. ......11.1..-. 115 .1m...h... ....1...1. ...1..1.. 11.....1.~. .1 1221 5.4. 275. 222 55 55 cos 5...... .1... .....1 1......11...S m...) 1.. s... ..2 ..4 ..1112. 131.... .1 .1 1221 5.4. 251. 212 NS 15111 DISK 51.... ;.1...1.11.. ......;... ..1. 1.15. - ..m... .1.....1... .....11 mm. .1 .1 1222 5.4. 225 1.45 NS DISK La... ..1... x...)- 2....1- $.12. 1.... (1122 .11.. W...I.~, .1 .1 1222 5.4. 221. 223 NS 1151.0 5....1ing WD .22....2 .. 115 11.. .1 .1 1222 5.4. 252. 15.4 WD cos WD ........ 1. 1...... ..1... 115. 131112. ........ ..1. 11...... 1222 5.4. 252. L71 NS 131.511 cos 115 . .1....1 m.g...1..,.1..... 1.1....11... ...1.1.1. 11......2. .1 .1. 1222 5.4. 227. 572 NS 115 cos 115 . NS .2112... “.41.... mum... 12.5.11 (2.1.. 1222 5.4. 221. 1.57 1511 ST cos 11......1 .1... 112.111 21......4 1.1 g.1..1.. “.1.... 1211 11... 1222 11.1.... 257. 472 NS cos WD ..11..... 1. 1.... 115,125.12 1...1... 115 ..1.1...;...1..11, 12...... .1 .1 1222 .554. 225. 1.32 NS 115 cos 115 . NS mu... m... 5.1...11y 11.1.1. 5..1..I1 12...... .1 .1 1222 5.4. 225. 1.32 BH 115 cos 2H . 115 11...... 3.... 5......111 11.... 12.5.11 12......4 1222 5.4. 224. 1.22 5GN 421' cos 5,-...1...1.... emlulen I...“ 51:11 1.1.. 1.1....“ .1 .1 1222 111111555 257. 2217 EH N5 cos 211.115 1.... .......... .2124. 1. 5.1.1.1.... .1.... 5....11 1.1....“ .1 .1 1222 111111555. 257. 1217 NS 115 cos 115.115 1.... n..1.1.... ..1115. 1.. 3.1.1... 1.. .1.... 15.21.11 (-1.... .1 .1. 1222 5.4. 421. 1.57 2H DISK 17..m..4..1 121-I. MW...“ ...12 ........1 1.. .1...1 1.... 121112. R... .1 .1 1222 111111555 252. 411: NS 1511 cos 2.1.11.1... 5....11......u..1.d 1. “211...... 1.1.... 1.... 15111 Table from: Nemiroff, R. J. 1993y Comments on Astl‘nphysics. 17, No. .1, in press AST 203 (Spring 2011) — Now known to be cosmological Gamma Ray Burst GRBQQO123 PRcaeoeASTsciopo-A.chMem3T3diandNASA AST 203 (Spring 2011) 10’ oeumu'uecnt Gamma-Rev Bu sts Tr War 105 niggw It} 10* tunixfimm 1. qge' 1-35 .nlgfiaun: iu’ca '0! South’secrra 5mm \\\\ n. Tr'qge 5| __J I- _...__ _- km Irqqs' xv: 13’ omnisfimna 1:1’ CauIIIiIII'Sncund 'Jm-m (Credit: J.T. Bonnell (NASA/GSFC)) http:/nmagine.gsfc.nass.gov/docs/science/know_l1/gm_profiles.html ‘1 M Gamma-Ray Bursts - Debate for many years whether cosmological or galactic HST - STIS Gamma-Ray Bursts - Two populations — Long — Short - Two models — Relativisticjets in core-collapse supernova (long) — Merging neutron stars (short) AST 203 (Spring 2011) Gamma-Ray Bursts Day 13-14 Day 23-24 Transient \ \ ‘I n x \ Host Galaxy Day 76-77 Day 159—1 61 A Supernova in GRB 011121 Hubble Space Telescope/Wide Field Planetary Camera (WFP02) Shri Kulkarni, Joshua Bloom‘ Paul Price, and the Caltech—NRAO GRB Collaboration Coincident GRB and SN! AST 203 (Spring 2011) Gamma-Ray Bursts Nicolle Rager Fuller/NSF AST 203 (Spring 2011) Summary of Things That Blow Up Novae: thermonuclear explosion of the accreted H layer on the surface of a white dwarf in a binary system. X-ray Burst: thermonuclear explosion of the accreted H/He layer on the surface of a neutron star in a binary system Type la Supernova: thermonuclear explosion of the entire white dwarf, which accreted material until reaching the Chandrasekhar mass. Core Collapse Supernova (Type lb, lc, or II SN): gravitational powered supernova. The inert iron core can no longer produce energy via fusion, and exceeds the Chandrasekhar mass and collapses until it reaches nuclear densities. The outer layer bounce, and are ejected. A neutron star or black hole is left behind. Gamma-ray Burst: jets from energetic core-collapse SN or merging NSs AST 203 (Spring 2011) ...
View Full Document

This note was uploaded on 05/04/2011 for the course AST 203 taught by Professor Simon,m during the Spring '08 term at SUNY Stony Brook.

Ask a homework question - tutors are online