Introduction to regression lecture notes

Introduction to regression lecture notes - Introduction to...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Introduction to regression Adam J. Rothman April 12, 2011 Contents 1 Introduction 2 1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Introductory example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Exploring the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Using the model to predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Simple linear regression 7 2.1 Definition of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Estimation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Example: predicting satisfaction with garlic content . . . . . . . . . . . . . . 9 2.4 Inference about the slope 1 in simple linear regression . . . . . . . . . . . . 12 2.4.1 Assumptions and formula for the t-test for the slope 1 . . . . . . . . 13 2.4.2 Using R to perform the calculations . . . . . . . . . . . . . . . . . . . 13 2.5 Example: standardized test scores . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Generating data from the simple linear regression model . . . . . . . . . . . 16 3 Polynomial regression 17 3.1 Definition of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Estimation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Inference about the order of the polynomial population regression function using the f-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 Assumptions and formula for the level f-test . . . . . . . . . . . . . 22 3.3.2 How to select d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.3 Selecting the appropriate polynomial order for the corn data by hy- pothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.4 Revisiting the standardized test score data . . . . . . . . . . . . . . . 26 3.4 Relating the t-test and f-test . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5 Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 4 Appendix 30 1 Introduction 1.1 Definitions In one-way ANOVA, we modeled a response in J subpopulations defined by levels of a fac- tor. Using realizations of J independent random samples (one from each subpopulation distribution), we tested H : all J subpopulation means are equal versus H a : at least one subpopulation mean is different. Regression is an extension of this idea, where the factor (categorical characteristic) is replaced with one or more predictors (numerical character- istics)....
View Full Document

This note was uploaded on 05/06/2011 for the course STAT 5021 taught by Professor Staff during the Spring '08 term at Minnesota.

Page1 / 30

Introduction to regression lecture notes - Introduction to...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online