{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Ex 3_4 - 7 62 3 c hapter D ifferentiation g t f t o The d...

This preview shows pages 1–2. Sign up to view the full content.

762 chapter 3: Differentiation The differentiability of the trigonom€tdc functions throughout thcir domains gives anothcr proofoftheif continuity ar cvcry pointin thcn domains (Theotcn 1, Section 3 1). So \$€ can calculatc limits of algcbraic combinations and compositcs of trigonometric functions by direcl subslitution. EXAMPLE 7 \t + *.; ':i, !,"(u - trn f) rt;,".n - ]lFt cos(r tar 0) cos(r 0) = \,5 : I \6 EXERCISES 3.4 ln Exercises I l2.lind 41lJ. l I= 10r+lcosr 3. r=cscr 4Vr+7 |U.r:l-s\I 14.t:l.-secr+5d' 18. r:arsind+cos, 20. r = (l + sece)sind 22. /): (l + cscq)cosq 5. _r : (secx + tanrl(secr lanrl 6. l: Glnr + cosr)\ecr ll. L: rrsinr + zrcosr 2sinr 12. .f = a: cocr 2:Y sinr 2 cosr ln taeicises l3 16. fhd lj/dr. ln Exerciscs r7 20, fintl drl.lA. ln Exerciscs 21 24. find d/dq. I zr. f: ) +.or4 sina + cosa 25. Find v" i{ 26. Find/1rr = /1_r'1dr4 if ln E\erclses 27 30.graph the curts ovcr the gilen inten'als. together wilh thel Lrecnts at the 8i!t! \€lues oft. Label eachcurve andtan_ gent wilh rts equdhDn.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}