Tutorial_2 - √ θ dθ . Ans . (a)-2 3 cos( x 3 / 2 + 1) +...

This preview shows pages 1–2. Sign up to view the full content.

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA 1505 Mathematics I Tutorial 2 1. Use L’Hopital’s rule to ﬁnd the following limits. (a) lim x π/ 2 1 - sin x 1 + cos2 x (b) lim x 0 ln(cos ax ) ln(cos bx ) , a, b > 0 (c) lim x →∞ x tan 1 x (d) lim x 0+ x a ln x , a > 0 (e) lim x 1 x 1 1 - x (f) lim x 0 + x sin x (g) lim x 0 ± sin x x 1 x 2 Ans. (a) 1 4 (b) a 2 b 2 (c) 1 (d) 0 (e) e - 1 (f) 1 (g) e - 1 / 6 2. Evaluate the following deﬁnite integrals. (a) Z 2 1 s 2 + s s 2 ds. (b) Z 4 - 4 | x | dx. (c) Z π 0 1 2 (cos x + | cos x | ) dx. (d) Z π 0 sin 2 1 + θ 2 · dθ . Ans . (a) 1 + 2 - 2 3 / 4 (b) 16 (c) 1 (d) 1 2 π + sin2 3. Using the fundamental theorem of Calculus, ﬁnd the derivative dy/dx for the following functions. (a) y = Z x 0 cos tdt. (b) y = Z x 2 0 cos tdt. (c) y = Z sin x 0 dt 1 - t 2 , | x | < π 2 . Ans . (a) cos x 2 x (b) 2 x cos x (c) 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
MA1505 Tutorial 2 4. Using the substitution method, or otherwise, ﬁnd the following integrals. (a) Z x 1 / 2 sin( x 3 / 2 + 1) dx. (b) Z csc 2 2 t cot2 tdt. (c) Z 1 θ 2 sin 1 θ cos 1 θ dθ . (d) Z 18tan 2 x sec 2 x (2 + tan 3 x ) dx. (e) Z sin θ θ cos 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: √ θ dθ . Ans . (a)-2 3 cos( x 3 / 2 + 1) + C (b)-1 4 cot 2 2 t + C (c)-1 2 sin 2 1 θ + C (d) 6 ln | tan 3 x + 2 | + C (e) sec 2 √ θ + C 5. Applying the method of integration by parts , or otherwise, ﬁnd the following integrals. (a) Z x sin ‡ x 2 · dx. (b) Z t 2 e 4 t dt. (c) Z e-y cos y dy . (d) Z θ 2 sin(2 θ ) dθ . (e) Z z (ln z ) 2 dz . (f) Z { sin e-x + e x cos e-x } dx . Ans . (a)-2 £ x cos ( x 2 )-2sin ( x 2 )/ + C (b) ( t 2 4-t 8 + 1 32 ) e 4 t + C (c) e-y 2 (sin y-cos y ) + C (d)-1 2 £ θ 2 cos(2 θ )-θ sin(2 θ )-1 2 cos(2 θ ) / + C (e) 1 2 h z 2 (ln z ) 2-z 2 (ln z ) + z 2 2 i + C (f) e x cos e-x + C 2...
View Full Document

This note was uploaded on 05/10/2011 for the course MATH 1505 taught by Professor Yap during the Winter '11 term at National University of Singapore.

Page1 / 2

Tutorial_2 - √ θ dθ . Ans . (a)-2 3 cos( x 3 / 2 + 1) +...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online