{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

c10_nlp_methods (1)

# c10_nlp_methods (1) - Instructions Chapter10...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Instructions Page 2 5 Quadratic Programming Example solved with Math Programming add-in with Excel Solver Math Programming-Nonlinea 7 Multidimensional Search Methods Example solved with Teach NLP using steepest descent (gradient search) Teach NLP Gradient Search on a more General Function (the location problem) Teach NLP Algorithms for Constrained Optimization (Supplement) Example solved with Math Programming add-in with Excel Solver Math Programming-Nonlinea Example solved with Math Programming add-in with Excel Solver Math Programming-Nonlinea Demonstration of the Teach NLP Add-in Examples for the section solved with Teach NLP Teach NLP Ex_14 Quad Location Ex_17 Ex_18 TeachNLP
Instructions Page 3 ar/Excel Solver ar/Excel Solver ar/Excel Solver

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Instructions Page 4 ar/Excel Solver ar/Excel Solver ar/Excel Solver
Example 1 x_e1 Values f_e1(x_e1) x_e1 c Q 1 x_e1* x_e1(1) 2.5 -25 1 -20 1 8 2.5 cx = -50 .5xQx= 25 x_e1 Solution Gradient Hessian Diagonalize Analysis 1 2.5 0 8 8 This is a stationary point (Gradient Norm =0). Objective -25 Var. Linear Tran The Hessian matrix is positive definite. It is a strong local minimum.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 40

c10_nlp_methods (1) - Instructions Chapter10...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online