3.6 Notes - If y ≤ … shade everything below the line....

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
3.6 Graphing Linear Inequalities Review: Solving an inequality is the same as solving an equation, except that when you multiply  or divide by a negative number, you have to switch the inequality sign around. Example: Solve for y: 3x – 2y > 6 Graphing a Linear Inequality in Two Variables Solve the inequality for y. Graph the line as you would for an equation.   Use a solid line for ≤ or ≥; use a dashed line for < or >. If y ≥ … shade everything above the line.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: If y ≤ … shade everything below the line. Examples: Graph 3x - 2y > 6 Graph x ≤ 2y To graph the intersection or union of two inequalities: Graph each inequality. The intersection is where they overlap. The union is the combination of the two graphs. Examples: Graph the intersection of x ≤ 2 and y ≥ x + 1 Graph the union of x + 2y ≤ 4 or y ≥ -1 Homework: p. 198 # 1-21 odd (Bonus: 69, 70)...
View Full Document

This note was uploaded on 05/13/2011 for the course MTH 110 taught by Professor Helenius during the Spring '08 term at Grand Valley State University.

Page1 / 2

3.6 Notes - If y ≤ … shade everything below the line....

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online