# 3.6 Notes - If y ≤ … shade everything below the line....

This preview shows pages 1–2. Sign up to view the full content.

3.6 Graphing Linear Inequalities Review: Solving an inequality is the same as solving an equation, except that when you multiply  or divide by a negative number, you have to switch the inequality sign around. Example: Solve for y: 3x – 2y > 6 Graphing a Linear Inequality in Two Variables Solve the inequality for y. Graph the line as you would for an equation.   Use a solid line for ≤ or ≥; use a dashed line for < or >. If y ≥ … shade everything above the line.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: If y ≤ … shade everything below the line. Examples: Graph 3x - 2y > 6 Graph x ≤ 2y To graph the intersection or union of two inequalities: Graph each inequality. The intersection is where they overlap. The union is the combination of the two graphs. Examples: Graph the intersection of x ≤ 2 and y ≥ x + 1 Graph the union of x + 2y ≤ 4 or y ≥ -1 Homework: p. 198 # 1-21 odd (Bonus: 69, 70)...
View Full Document

## This note was uploaded on 05/13/2011 for the course MTH 110 taught by Professor Helenius during the Spring '08 term at Grand Valley State University.

### Page1 / 2

3.6 Notes - If y ≤ … shade everything below the line....

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online