Section_1-3

# Section_1-3 - How can we keep all these groups of numbers...

This preview shows pages 1–12. Sign up to view the full content.

Section 1-3 Exploring Real numbers

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Objectives Understand the sets of real numbers and  why we classify numbers Recognize absolute value as distance from  zero.
Natural numbers  –     1,2,3,……. Whole numbers  – 0,1,2,3,…. . Integers  –  ……-2,-1,0,1,2,3,4,……. . Rational Numbers-  any number that you can write  in the form    where a and b are integers and  they can be written as decimals that repeat or terminate All integers are rational numbers because you can write  any integer as a fraction

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Name the set(s) of numbers to which  each given number belongs 1. -13  1.   1. –3.28 1. 42 25 13
Irrational numbers  Irrational Numbers-  cannot be expressed in  form      , where a and b are integers the numbers after the decimal go on forever  without any repeating TRUE OR FALSE: ALL INTEGERS ARE RATIONAL NUMBERS TRUE OR FALSE: ALL NEGATIVE NUMBERS ARE INTEGERS

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: How can we keep all these groups of numbers straight in our heads? Put this diagram in your notes Name the set(s) of numbers to which each number belongs 1.-12 1.-4.67 1. 1. Which set of numbers is most reasonable for the cost of a new bike? 5 The number line! Opposites- two numbers lie the same distance from zero on a number line in opposite directions. Absolute Value – Distance from 0 on the number line (always positive). Simplify each expression What do those bars mean? 5 4-7 . 3-7 5 Simplify this expression x x x +- Comparing numbers on the number line Inequality – a mathematical sentence that compares the value of two things. Inequality symbols: Insert the correct symbols 5 10-5 3-1-20 16 5 4-8 3 2 1 Homework #3 p 21 (1-10, 14-20, 24-27, 50-62 even)...
View Full Document

## This note was uploaded on 05/16/2011 for the course ALGEBRA 098 taught by Professor Johnson during the Spring '09 term at Grand Valley State.

### Page1 / 12

Section_1-3 - How can we keep all these groups of numbers...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online