33_pdfsam_VLSI TEST PRINCIPLES & ARCHITECTURES

33_pdfsam_VLSI TEST PRINCIPLES & ARCHITECTURES - 2...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
2 VLSI Test Principles and Architectures on a feature size of less than 100 nanometers (100 nm). The reduction in feature size has also resulted in increased operating frequencies and clock speeds; for example, in 1971, the first microprocessor ran at a clock frequency of 108 KHz, while current commercially available microprocessors commonly run at several gigahertz. The reduction in feature size increases the probability that a manufacturing defect in the IC will result in a faulty chip. A very small defect can easily result in a faulty transistor or interconnecting wire when the feature size is less than 100 nm. Furthermore, it takes only one faulty transistor or wire to make the entire chip fail to function properly or at the required operating frequency. Yet, defects created during the manufacturing process are unavoidable, and, as a result, some number of ICs is expected to be faulty; therefore, testing is required to guarantee fault- free products, regardless of whether the product is a VLSI device or an electronic
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/16/2011 for the course ENGINEERIN mp108 taught by Professor Elbarki during the Spring '08 term at Alexandria University.

Ask a homework question - tutors are online