55_pdfsam_VLSI TEST PRINCIPLES & ARCHITECTURES

55_pdfsam_VLSI TEST PRINCIPLES & ARCHITECTURES - 24...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
24 VLSI Test Principles and Architectures used for simulation-based design verification. As a result, the design verification stimuli are often also used for fault detection during manufacturing testing. In addition to the stuck-at fault model, delay fault models and delay testing have been traditionally based on the gate-level description. While bridging faults can be modeled at the gate level, practical selection of potential bridging fault sites requires physical design information. The gate-level description has advantages of functionality and tractability because it lies between the RTL and physical levels; however, it is now widely believed that test development at the gate level is not sufficient for deep submicron designs. 1.4.3 Switch Level For standard cell-based VLSI implementations, transistor fault models (stuck-open and stuck-short) can be applied and evaluated based on the gate-level netlist. When the switch-level model for each gate in the netlist is substituted, we obtain an
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/16/2011 for the course ENGINEERIN mp108 taught by Professor Elbarki during the Spring '08 term at Alexandria University.

Ask a homework question - tutors are online