hw09 - STAT 225 - Homework 9 Due Friday, November 5...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: STAT 225 - Homework 9 Due Friday, November 5 Comments: 1. This homework is due Friday, November 5 in class, BEFORE class starts. 2. Please remember staple if you turn in more than one page. 3. You must always show all work. If you do not show your work, you may not receive full credit. Do the following problems. 1. Use the Beta distribution to evaluate 2 integraldisplay 1 radicalbigg x 1 x dx . 2. Let Y Poisson ( ). (a) Show that the moment generating function (mgf) of Y is: M Y ( t ) = e ( e t- 1) . Guidance: Youll have to use the fact that e a = summationdisplay k =0 a k k ! and remember e ty = ( e t ) y (b) Differentiate the mgf in (a) to find E ( Y ) and E ( Y 2 ). Then find V ( Y ). Comment: We know from our discussion about the Poisson distribution that E ( Y ) = and V ( Y ) = . In this part you asked to prove these results using the mgf. 3. Let the random variable X have the following mgf: M X ( t ) = a 1 t + b 1 2 t for a,b > 0. Find E ( X )....
View Full Document

Page1 / 3

hw09 - STAT 225 - Homework 9 Due Friday, November 5...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online