AP Calculus BC-2006 - APE Cal-31111.15 EC EDGE Scaring...

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: APE Cal-31111.15 EC EDGE Scaring fluid-3111165 AP® eALeLILua at: aaaa aename GUIDELINES fluentinn 1 let E be the ahaded1eginnhnunded hy' the graph nf J' = ha I and the line .t' = .1' — 1. La ahnttn abate. [:1] Find the area ef R. hne I‘.‘ = —3. :11] Find the 't'ehune nf the aehd generated when R is natated aheut the henznntal A r [e] Waite: hut dd net evaluate. an integral eatpreaaien that can he need In find the f} t'nlunae ef the aehd generated when R 1a :‘ntated ahent the y-aana. 111(1'] = 1' —2 when .1: = “3.151159 m131-1619. LetE=EL1iE§9am1T = 3.14619 Area {213: [Lflfx] — [.t— 3]] ab: = 1.15149 1:1.fl'regrafld “ 3411113115 [1:31:13sz . 1-‘n1ume=ri;['[Lu[x;.+3;E—[x—:+3f'] m: I ,;m1eg1-and = 34 193 D134 19': 111111115. {3135111111 and mam-H « :in'regmnd 1 : 11mm and cans'raflt net nALeULus ee sass senalas smneuaes Iillilestian 2 At an interneetinn in Themastille. Dregnn ears turn left at the rate Lit] = ISIIIJF-z-in; Irl |. 3 tars per hnur 250 ever The time interval 0 .r 10 hauls. The graph ef I'. = £[r'] is shaun ale-ave. {PEI I"Illa. |_' I] Ellll Tn the nearest vvhele munher. find the rural number nf ears turning left at the interneetinn ever the time mterval 0 r 10 heurs. Ii'Ill Traffic engineers will enn-z-rrler ruin restrictie-ns “30 tvhen Bit) 2 1:70 per hear. Einrl all value-:- . . . .. . . -- an :3: .+ fnrtvhJ-th mt] e 1:0 and enmpute the verage value nf L ever this time interval. U _ Lntli-tate ums af measure. .l h 0 | 1 IE Traffic engineers will install a signal if there rs any tan—ham time interval tlurmg tvhrth the predutt cf the tntal munher nf tars truning left anti the tntal number ef tun-taming traveling straight thrnugh the intersectinn greater than 300.000. In every ttva-hnur time interval. 500 nnt nnnng tars travel straight threugh the interseetren. Does this intersectinn require a traffic signal“? Explain the reasening that leads ta ynur tenelusinn. Ii : setup I flJlE-‘n‘fi': I' lib} = ' " : Huber-3:11 when I I'r" : average value integral : 111.151.1513 wnh 11.1.11T-‘_-. : I: finders 4EJ|C| : valid filter-.111 [.H. h + , .'.|+_' _. ._ 1 t [ Em m‘ .9.- : 111151.156 and explmuim ' ll be greater than 4IIIIU 2:11 that inten'al. :21:- auj; n:.'I:I-].1::n111' -'_-.1.I.1:I1'.11ren'a1 Elf _ : 111.151.15121'.audexplauatiafl Tea. a traffic -'.-.ig:1::1 is requn'ed. rJiluestinm 3 An :::b_|e::tn1:::1. 'g alnng a::ttt'..'e1n the: '-pl.ane at I: tin}: at time I: where .41' - r d: =1... - 1. . [11. -1' _ ' . [it 41.1:- [1 and : :I' r Ill. Attime r = the :::h_|e::t ia- at the paint [6. —3]. (Slate: tan—:3: = a:t':::::i.n.t::: {:a] Find the a::eele1'at:i-:-n 1:eetet' and the -'_-.pee::1-:-f'the :31:_ [le The I2111'-..'E' hat: a vertical tangent hne at -::-ne pnint. At ‘.=.-'hat tune r it: the :2: _ _, dennte the al-n-pe :::f' the line tangent tn the ::tt:'-:e at the pnint I: Jill-F? 1ntern1..:::f .r and use it tn evaluate lint talk-l. I I r I'I'I - [d] The graph :::f the I2111'-..'E' hat: a hertzeuzttal rapt-ate __t' = t". '5. an hnprnpel' integral that representa- thit. . tltte -f'. _I _ 1 :.aI:-:-n31-31'a11c:11 ‘- ' |_ 1 ::-3-peed m -' = [1.593 and == [1 when r = II 44' _ 1+:3 m I: I] = H.113 11m in I: : 3| = : integrain : limits : initial value cc-nsi-z-Ienr with 1-3-‘fl.-'El'1:i.1rlit AP' :' CALCULUS EC 20156 SCORING GUIDELINES rJiluestian :1 vi : _| I: feet per -'.-1':I:.‘:'_'Ill-:1::| Recl-tet .--1 has FIE-51TH? t'elctcit': t-'[t] launched upward ft'ctnt an initial height cf El feet at tinte r = U SE The t'elu:ucit'_-..' c: f the 1'cu:l-:et recei'ded fei' -'.-.ele-:-ted values. cf t -:-'-.'E1' the inten'al U t ' ec:::n-:l-'.-.. aza- cn. 111a the table a t__a__| Find the at'et'ag celeraticn -:-f1't'.:-:‘1:Et.-l -::-'..'er the time intert‘al [2| ‘ lmlicate units. at" measure. . TI) {13) Using cefl'ect explain the meaning cut" llr| eff] [-1,- :i_1_1 net-mg EIfthE- rackets. fight. Ute a mdpmur Riemann thin with submten‘alt. cf equal length tc- apprex i.1.t:Iate [1; Hit) tit. end per tecamd. At tinte- t = 0 recent. the initial hetgh cf the 1'cu:l-:et " "I feet, ' ' ' - -' - 7' feet per sec-end. Which cf the t1.‘.'-::- incl-Lets i‘: trace-hag 1' at tune I = ED -'_-ecc:n '.-5' Explain j.-'I:Itti' flJl-E-‘fl 1'. I 31131.1’61' : EKplflJlfiTi-"I Rie 111m 311m 1-' '. + 1-14 21+ ' + + 44] = ' 1.1::1it1::: :1 : fill-13134} :nmpmea 1:2: 1-42.30}, and drau- r: L :2: :1-.-]11.-3il:::1 : in :31) and [13} AP' :' CALCULUS BC 29135 SCORING GUIDELINES Questian 5 LTI:I:1-'.-.1I:1er the ehfiifleunal etpjatmu — = in" — — . t-z-r _1' at Let L]! = _.I' l_.‘l.'_ll be the particular -'.-.-::-lut1:::fl ten l' . -:1:ifl‘e1‘eut:iale-;1uati::lflwith the initial eafldflmu fl 1] = —-4. and '57" at [—1: —-'1]. II'I. . . afi' {ale Evaluate {111 la it pl'laaible fer the .‘J.'-'£1..1.'.i-'.- tc: be tauge at t-:- the graph-31‘3" at acme paint? Explain why :31' why n-a-t. Find the wanna-degree Taylet pI:Ilj.-':1-:!-mial :7 __ abmtt .:r: = —l. {d} L'ae Eulefa metll . matting at .1. = —l with 11.1.. L: -'.-.tep=_. of equal seize: t-a a}.1p:'-:-.1::i1m1te _.I'"[|I|]. She-1.15 the war]: that leads t-:I j_-'-:-1.u'aua1a=er. _!1:$=Um1d 1-:0 '--=1 (11' ' I_ 1 : .- 31.1:5-1' and explauancm . . _ _. ., I. ._ 1- _ I it] Flag] = —-1-+ E‘I_.i'.'+ 1J — 3|}: + 1}" I _ | 1 : quadrant and centered at .:r: = —1 L ' L 1 :-:-I:Iefl‘i-:-ient=_. . . _|- 1 :Eulei’s meme-:1 with 7' “5'15"” L ' I"__ 1 :Euler's apprtlximariclntc: __ AP'E' CALCULUS 5-: zone SCORING GUIDELINES Question 5 The filfletienn _.I'" defile-:1 by The FIG-1.1.7121 -'_-.e:'ie:-3 far all real number-2. .:r: ‘::I:' which The series. :: -.-_ _; L_i -. 5'-"-"1 3+4! EH + far all real number-2 'whj-eh The sene‘: I:-:-1:I1.'E'I'gee. {3] Find The lure: . 1] wet =.~e1‘1e=.~ fi::1' r" Jueriff-r' ‘fnur 311-1 ' {hj The graph elf I‘ll = ._ '- _.-' 2 Thrc-ugh the paint {'1}. —1]. Fin-:1 1-"'[|I|] and __1""I"U"I. I}ete1'nJ.1'hev.'herhe1'_]-' a relative nunimuu; a felam'e maximum, at neither at 1' = El. Gite a tea-243:1 f::nrj_.r::n_u'.aue1.1.'er. : eete up :‘atie : -:-I:I1.up11te-'_-. limit C-fffltifl : identifier;- radius ‘ '16:": alien-:11. ' I-flfl-fli} ' ' I:h.1t31i'_'lflf:E-I' hath Efldpfllflt‘: When J: = —1. the =.«e1'1e-'_-. 15 + % + 3 + - -- _' é- Tlti e: 1::ew:.a1.t£~e the limit -:-f the ind: .. :dual term; is nut 21:1.1 Thu-2.: the lfltEfl'fll ef I:-::-1J'-.'ei'genee 1:: —1 c: .t' : -:-I:I:1-:111-'.-.1v::u : Since __t-' LEI] = [II and __1 ' __1' 1.1.1:. a relative at .t' = U. ...
View Full Document

This note was uploaded on 05/17/2011 for the course ALGEBRA 098 taught by Professor Johnson during the Spring '09 term at Grand Valley State.

Page1 / 12

AP Calculus BC-2006 - APE Cal-31111.15 EC EDGE Scaring...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online