# chapter2 - Chapter2 MotioninOneDimension Dynamics

This preview shows pages 1–14. Sign up to view the full content.

Chapter 2 Motion in One Dimension

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Dynamics The branch of physics involving the  motion of an object and the relationship  between that motion and other physics  concepts Kinematics  is a part of dynamics In kinematics, you are interested in the  description  of motion Not  concerned with the cause of the  motion
Quantities in Motion Any motion involves three concepts Displacement Velocity Acceleration These concepts can be used to study  objects in motion

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Brief History of Motion Sumaria and Egypt Mainly motion of heavenly bodies Greeks Also to understand the motion of heavenly  bodies Systematic and detailed studies Geocentric model
“Modern” Ideas of Motion Copernicus Developed the heliocentric system Galileo Made astronomical observations with a  telescope Experimental evidence for description of  motion Quantitative study of motion

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Position Defined in terms of a  frame of  reference A choice of coordinate axes  Defines a starting point for measuring  the  motion Or any other quantity One dimensional, so generally the x- or y- axis
Displacement Defined as the  change in position   f stands for final and i stands for initial Units are meters (m) in SI f i x x x ∆ ≡ -

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Displacement Examples From A to B x i  = 30 m x f  = 52 m x = 22 m The displacement is positive,  indicating the motion was in the  positive x direction From C to F x i  = 38 m x f  = -53 m x = -91 m The displacement is negative,  indicating the motion was in the  negative x direction
Displacement, Graphical

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Vector and Scalar Quantities Vector quantities need both magnitude  (size) and direction to completely  describe them Generally denoted by boldfaced type and  an arrow over the letter + or – sign is sufficient for this chapter Scalar quantities are completely  described by magnitude only
Displacement Isn’t Distance The displacement of an object is not the  same as the distance it travels Example: Throw a ball straight up and then  catch it at the same point you released it The distance is twice the height The displacement is zero

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Speed The  average speed  of an object is defined as  the total distance traveled divided by the total  time elapsed Speed is a scalar quantity = = total distance Average speed total time d v t
Speed, cont Average speed totally ignores any  variations in the object’s actual motion  during the trip

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 05/17/2011 for the course PHY 2053 taught by Professor Buchler during the Spring '06 term at University of Florida.

### Page1 / 49

chapter2 - Chapter2 MotioninOneDimension Dynamics

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online