chapter16_PC - Chapter16 ElectricEnergy and Capacitance

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
    Chapter 16 Electric Energy and Capacitance
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Electric Potential Energy The electrostatic force is a conservative  force It is possible to define an electrical  potential energy function with this force Work done by a conservative force is  equal to the negative of the change in  potential energy
Background image of page 2
    Work and Potential Energy There is a uniform field  between the two plates As the charge moves  from A to B, work is  done on it W = Fd=q E x  (x f  – x i ) ΔPE = - W          = - q E x  (x f  – x i ) only for a uniform field
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Potential Difference The potential difference between points A and  B is defined as the change in the potential  energy (final value minus initial value) of a  charge q moved from A to B divided by the  size of the charge ΔV = V B  – V A  = ΔPE / q Potential difference is  not  the same as  potential energy
Background image of page 4
    Potential Difference, cont. Another way to relate the energy and the  potential difference:  ΔPE = q ΔV Both electric potential energy and potential  difference are  scalar  quantities Units of potential difference V = J/C A special case occurs when there is a  uniform  electric field V = V B  – V A = -E x   x Gives more information about units:  N/C = V/m
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Energy and Charge  Movements A positive charge gains electrical potential  energy when it is moved in a direction  opposite the electric field If a charge is released in the electric field, it  experiences a force and accelerates, gaining  kinetic energy As it gains kinetic energy, it loses an equal amount  of electrical potential energy A negative charge loses electrical potential  energy when it moves in the direction  opposite the electric field
Background image of page 6
    Energy and Charge  Movements, cont When the electric field is  directed downward, point  B is at a lower potential  than point A A positive test charge that  moves from A to B loses  electric potential energy It will gain the same  amount of kinetic energy  as it loses in potential  energy
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Summary of Positive Charge  Movements and Energy When a positive charge is placed in an  electric field It moves in the direction of the field It moves from a point of higher potential to  a point of lower potential Its electrical potential energy decreases Its kinetic energy increases
Background image of page 8
    Summary of Negative Charge  Movements and Energy When a negative charge is placed in an  electric field It moves opposite to the direction of the field
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/17/2011 for the course PHY 2054 taught by Professor Avery during the Spring '08 term at University of Florida.

Page1 / 53

chapter16_PC - Chapter16 ElectricEnergy and Capacitance

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online