ch08-p065 - 65. We observe that the last line of the...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
65. We observe that the last line of the problem indicates that static friction is not to be considered a factor in this problem. The friction force of magnitude f = 4400 N mentioned in the problem is kinetic friction and (as mentioned) is constant (and directed upward), and the thermal energy change associated with it is Δ E th = fd (Eq. 8-31) where d = 3.7 m in part (a) (but will be replaced by x , the spring compression, in part (b)). (a) With W = 0 and the reference level for computing U = mgy set at the top of the (relaxed) spring, Eq. 8-33 leads to UK E v d g f m i =+ ¡ =− F H G I K J Δ th 2 which yields v = 74 .ms for m = 1800 kg. (b) We again utilize Eq. 8-33 (with W = 0), now relating its kinetic energy at the moment it makes contact with the spring to the system energy at the bottom-most point. Using the same reference level for computing U = mgy as we did in part (a), we end up with gravitational potential energy equal to mg (– x ) at that bottom-most point, where the spring (with spring constant k 15 10 5 . N m) is fully compressed.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/17/2011 for the course PHY 2049 taught by Professor Any during the Spring '08 term at University of Florida.

Page1 / 2

ch08-p065 - 65. We observe that the last line of the...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online