ch44-p017 - 17. (a) The lambda has a rest energy of 1115.6...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
17. (a) The lambda has a rest energy of 1115.6 MeV, the proton has a rest energy of 938.3 MeV, and the kaon has a rest energy of 493.7 MeV. The rest energy before the decay is less than the total rest energy after, so energy cannot be conserved. Momentum can be conserved. The lambda and proton each have spin = /2 and the kaon has spin zero, so angular momentum can be conserved. The lambda has charge zero, the proton has charge + e , and the kaon has charge – e , so charge is conserved. The lambda and proton each have baryon number +1, and the kaon has baryon number zero, so baryon number is conserved. The lambda and kaon each have strangeness –1 and the proton has strangeness zero, so strangeness is conserved. Only energy cannot be conserved. (b) The omega has a rest energy of 1680 MeV, the sigma has a rest energy of 1197.3 MeV, and the pion has a rest energy of 135 MeV. The rest energy before the decay is greater than the total rest energy after, so energy can be conserved. Momentum can be
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/19/2011 for the course PHY 2049 taught by Professor Any during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online