# ODDREV01 - Review Exercises for Chapter 1 47 Review...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Review Exercises for Chapter 1 47 Review Exercises for Chapter 1 1. Calculus required. Using a graphing utility, you can estimate the length to be 8.3. Or, the length is slightly longer than the distance between the two points, 8.25. 3. x fx lim f x 0.1 0.26 0.25 0.01 0.25 0.001 0.250 0.001 0.2499 0.01 0.249 0.1 0.24 −1 1 1 x→0 −1 5. h x x2 x 2x (a) lim h x x→0 2 3 7. lim 3 x→1 x 3 1 2 . Then for Let (b) lim h x x→ 1 > 0 be given. Choose 0< x 1< x 1 1< x< 2< L< , you have 3 x fx 9. lim x2 x→2 3 1 3 1< ⇒ x2 4 x 2x 2< 2 < Let > 0 be given. We need x2 ⇒x 2< 1 x 2 . Assuming, 1 < x < 3, you can choose x x 2x x2 x2 3 fx 11. lim t→4 5. Hence, for 0 < x 5 you have 2< 2< 4< 1< L< 4 5 < 1 x 2 t 2 2 6 2.45 13. lim t→ 2 t t2 2 4 t→ 2 lim 1 t 2 1 4 15. lim x x x→4 2 4 x→4 lim x 1 x x x 2 2 2 x 2 1 4 25 17. lim 1x x→0 1 x 1 x→4 lim 1 42 5 x2 x 5x 5x 5 25 x1 xx 1 1 1 lim x→0 x 1 x→0 lim 1 19. lim x→ x3 5x 125 5 x→ 5 lim 21. lim 1 x→0 cos x sin x x→0 lim x sin x 1 cos x x 10 0 x→ 5 lim x2 75 48 Chapter 1 sin 6 Limits and Their Properties x x 12 sin 1 2 6 cos x cos x x 3 2 1 cos x lim x→0 23. lim x→0 lim lim 0 6 sin x 3 2 sin x x 12 x→0 x→0 3 1 2 25. lim f x x→c gx 2x x 1 1 3 4 2 3 1 2 27. f x (a) x fx 3 1.1 0.5680 2x x 2x x 1 1 1 1 1.01 0.5764 3 3 1.001 0.5773 1.0001 0.5773 (b) 2 x→1 lim 0.577 lim Actual limit is 2x x 2x 1 1 1 3 2x 1 3 3 3 4.9t2 t 3 3 3. 2x 2x 3 1 1 3 3 −1 0 2 (c) lim x→1 x→1 x→1 lim lim x 2x 1 2 1 x→1 2 23 sa t→a a st t 4.9 4 4.9 t 4 4.9 t 2 1 3 200 4 4 29. lim lim t→4 200 31. lim x→3 x x 3 3 x→3 lim x x 3 3 1 lim t→4 4t t 4 lim t→4 39.2 m sec 33. lim f x x→2 0 35. lim h t does not exist because lim h t t→1 t→1 t→1 1 1 2 and lim h t 1 2 1 1 1. 37. f x x→k x→k x 3 3 3 k k 3 where k is an integer. 2 where k is an integer. 39. f x x→1 3x2 x x 1 2 2 3x x 5 lim x lim x 2x 1 1 lim f x x→1 lim 3x Nonremovable discontinuity at each integer k Continuous on k, k 1 for all integers k 1 x 1 x 2 2 Removable discontinuity at x Continuous on ,1 1, 3 x 1 1 41. f x lim 2 2 43. f x x→1 x→1 lim f x x→2 lim f x 1 Nonremovable discontinuity at x Continuous on ,2 2, 2 Nonremovable discontinuity at x Continuous on ,1 1, Problem Solving for Chapter 1 45. f x csc x 2 47. f 2 5 x→2 49 Nonremovable discontinuities at each even integer. Continuous on 2k, 2k 2 Find c so that lim cx c2 6 2c c 5 1 1 2 4 2 6 5. for all integers k. 1 < 0 and 49. f is continuous on 1, 2 . f 1 f2 13 > 0. Therefore by the Intermediate Value Theorem, there is at least one value c in 1, 2 such that 2c3 3 0. 51. f x x→2 x2 x x 4 4 2 x x 2 2 (a) lim f x (b) lim f x x→2 x→2 (c) lim f x does not exist. 53. g x 1 2 x 0 55. f x 8 x 10 2 Vertical asymptote at x 2x2 x x2 x sin 4x 5x 2x 1 x 2 1 1 Vertical asymptote at x x x3 1 1 1 x3 10 1 x 1 3 57. x→ 2 lim 59. x→ 1 lim x→ 1 lim x2 1 61. lim x→1 63. lim x x→0 65. lim x→0 x→0 lim 4 sin 4x 5 4x 4 5 67. lim x→0 csc 2x x x →0 lim 1 x sin 2x 69. C 80,000p , 0 ≤ 0 < 100 100 p \$14,117.65 \$720,000 (b) C 50 (d) p → 100 (a) C 15 (c) C 90 \$80.000 80,000p 100 p lim Problem Solving for Chapter 1 1. (a) Perimeter PAO x2 x2 Perimeter PBO x x y x2 1 1 2 2 1 2 2 x2 x2 x2 x2 y2 x4 y2 x4 1 1 1 1 (b) r x x2 x x2 12 12 x4 4 x2 x2 2 9.08 9.60 0.95 x4 x4 1 1 1 0.1 2.10 2.00 1.05 0.01 2.01 2.00 1.005 1 y2 x4 x Perimeter Perimeter rx PAO PBO 33.02 33.77 0.98 3.41 3.41 1 (c) lim r x x→0 1 1 0 0 1 1 2 2 1 50 Chapter 1 Limits and Their Properties 12 5 5 . 12 3. (a) There are 6 triangles, each with a central angle of 60 3. Hence, Area hexagon 6 1 bh 2 6 1 1 sin 2 3 5. (a) Slope (b) Slope of tangent line is y h = sin θ 33 2 h = sin 60° 1 60° 2.598. 12 y 5 x 12 5 x 12 x, 169 x x→5 5 169 Tangent line 12 169 x2 5 x x x 12 169 5 x2 12 12 169 169 x2 x2 x2 1 θ (c) Q mx x, y Error: 33 2 0.5435. (d) lim mx x→5 lim 12 (b) There are n triangles, each with central angle of 2 n. Hence, An (c) n 1 bh 2 6 2.598 n 1 2 1 sin 2 n 24 3.106 48 3.133 n sin 2 2 96 3.139 n . x→5 lim lim 144 169 x2 5 12 169 x2 x2 5 12 x 5 169 5 12 25 169 x2 x2 x→5 n An 12 3 x→5 lim 12 12 10 (d) As n gets larger and larger, 2 Letting x An 2 n, sin 2 n 2n . sin x x n approaches 0. 12 This is the same slope as part (b). sin 2 n 2n which approaches 1 7. (a) 3 x1 x1 3 3 ≥0 ≥ (b) 3 27 27, x 3 x x x1 x2 1 3 − 30 0.5 (c) x → 27 lim f x 3 2 28 27 1 3 27 1 1 14 2 x≥ Domain: x ≥ (d) lim f x x→1 0.0714 12 − 0.1 1 x1 3 x→1 lim 2 3 1 x1 3 1 x2 x1 3 3 3 4 3 x1 x1 2 3 3 2 2 x→1 lim lim 3 1 x1 3 x1 3 x1 1 3 3 x→1 1 1 x1 3 3 2 x1 3 2 x→1 lim 1 2 3 1 12 1 9. (a) lim f x x→2 1 12 3: g1, g4 (b) f continuous at 2: g1 (c) lim f x x→2 3: g1, g3, g4 Problem Solving for Chapter 1 11. 4 3 2 1 −4 −3 −2 −1 −2 −3 −4 a b x x 1 2 3 4 1 2 y 51 13. (a) y (a) f1 f0 f f 1 2 1 0 0 3 1 1 1 1 2 1 1 1 0 (b) (i) lim Pa, b x x→a 1 0 0 1 (ii) lim Pa, b x x→a 1 1 (iii) lim Pa, b x x→b 2.7 x→1 (iv) lim Pa, b x x→b (b) lim f x lim f x (c) Pa, b is continuous for all positive real numbers except x a, b. (d) The area under the graph of u, and above the x-axis, is 1. x→1 x→1 2 lim f x (c) f is continuous for all real numbers except x 0, ± 1, ± 2, ± 3, . . . ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online