# ODDREV03 - Review Exercises for Chapter 3 v02 sin 2 32 2200...

This preview shows pages 1–4. Sign up to view the full content.

Review Exercises for Chapter 3 43. changes from < 4961 feet 5 s 2200 d 2 16 cos 1 20 p 180 21 180 2 < 4961 feet D r < dr d u 5 s 11 2 10 d 180 5 10 1 180 2 dr 5 s 2200 d 2 16 s cos 2 d d 10 8 to 11 8 v 0 5 2200 ft y sec r 5 v 0 2 32 s sin 2 d 45. Let Using a calculator: ! 99.4 < 9.96995 < ! 100 1 1 2 ! 100 s 2 0.6 d 5 9.97 f s x 1D x d 5 ! 99.4 5 ! x 1 1 2 ! x dx f s x x d < f s x d 1 f 9 s x d dx f s x d 5 ! x , x 5 100, dx 52 0.6. 47. Let Using a calculator, 4 ! 624 < 4.9980. 5 5 2 1 500 5 4.998 f s x x d 5 4 ! 624 < 4 ! 625 1 1 4 s 4 ! 625 d 3 s 2 1 d f s x x d < f s x d 1 f s x d dx 5 4 ! x 1 1 4 4 ! x 3 dx f s x d 5 4 ! x , x 5 625, dx 1. 49. Let Then ! 4.02 < ! 4 1 1 2 ! 4 s 0.02 d 5 2 1 1 4 s 0.02 d . f s 4.02 d < f s 4 d 1 f s 4 d dx f s x d 5 1 y s 2 ! x d . f s x d 5 ! x , x 5 4, dx 5 0.02, 51. In general, when approaches D y . D x 0, dy 53. True 55. True Review Exercises for Chapter 3 163 1. A number c in the domain of f is a critical number if or is undefined at c . x 4 4 3 2 1 4 4 3 1 2 3 fc () = 0 ( ) is undefined. y f f s c d 5 0 3. Critical numbers: Left endpoint: Critical number: Critical number: Minimum Right endpoint: Maximum s 2 , 17.57 d s 2.73, 0.88 d s 0.41, 5.41 d s 0, 5 d x < 0.41, x < 2.73 5 0 when sin x 5 2 5 . g s x d 5 2 2 5 sin x 1 (2.73, 0.88) (6.28, 17.57) 18 4 2 g s x d 5 2 x 1 5 cos x , f 0, 2 ±

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
164 Chapter 3 Applications of Differentiation 7. (a) f s 1 d 5 f s 7 d 5 0 x 21 0 46 2 4 6 2 6 4 y f s x d 5 3 2 | x 2 4 | (b) f is not differentiable at x 5 4. 13. c 5 x 1 1 x 2 2 5 Midpoint of f x 1 , x 2 ± 2 Ac 5 A s x 1 1 x 2 d f 9 s c d 5 2 Ac 1 B 5 A s x 1 1 x 2 d 1 B 5 A s x 1 1 x 2 d 1 B f s x 2 d 2 f s x 1 d x 2 2 x 1 5 A s x 2 2 2 x 1 2 d 1 B s x 2 2 x 1 d x 2 2 x 1 f s x d 5 2 Ax 1 B f s x d 5 Ax 2 1 Bx 1 C 15. Critical numbers: and x 5 7 3 x 5 1 5 s x 2 1 ds 3 x 2 7 d f s x d 5 s x 2 1 d 2 s 1 d 1 s x 2 3 ds 2 ds x 2 1 d f s x d 5 s x 2 1 d 2 s x 2 3 d Interval: Sign of Conclusion: Increasing Decreasing Increasing f s x d > 0 f s x d < 0 f s x d > 0 f s x d : 7 3 < x < ± 1 < x < 7 3 2 ± < x < 1 9. c 5 1 14 9 2 3 5 2744 729 < 3.764 f s c d 5 2 3 c 2 1 y 3 5 3 7 f s b d 2 f s a d b 2 a 5 4 2 1 8 2 1 5 3 7 f s x d 5 2 3 x 2 1 y 3 f s x d 5 x 2 y 3 , 1 x 8 11. c 5 0 f s c d 5 1 1 sin c 5 1 f s b d 2 f s a d b 2 a 5 s p y 2 d 2 s 2 y 2 d s y 2 d 2 s 2 y 2 d 5 1 f s x d 5 1 1 sin x f s x d 5 x 2 cos x , 2 2 x 2 17. Domain: Critical number: x 5 1 5 3 2 x 2 1 y 2 s x 2 1 d 5 3 s x 2 1 d 2 ! x h s x d 5 3 2 x 1 y 2 2 3 2 x 2 1 y 2 s 0, ± d h s x d 5 ! x s x 2 3 d 5 x 3 y 2 2 3 x 1 y 2 Interval: Sign of Conclusion: Decreasing Increasing h s x d > 0 h s x d < 0 h s x d : 1 < x < ± 0 < x < 1 5. Yes. f is continuous on differentiable on for satisfies f s c d 2 0. c 5 1 3 x 5 1 3 . f s x d 5 s x 1 3 ds 3 x 2 1 d 5 0 s 2 3, 2 d . f 2 3, 2 ± , f s 2 3 d 5 f s 2 d 5 0.
Review Exercises for Chapter 3 165 19. Relative minimum: s 2, 2 12 d h 9 s t d 5 t 3 2 8 5 0 when t 5 2. h s t d 5 1 4 t 4 2 8 t Test Interval: Sign of Conclusion: Decreasing Increasing h s t d > 0 h s t d < 0 h s t d : 2 < t < ± 2 ± < t < 2 21.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 05/18/2011 for the course MAC 2311 taught by Professor All during the Fall '08 term at University of Florida.

### Page1 / 13

ODDREV03 - Review Exercises for Chapter 3 v02 sin 2 32 2200...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online