ODDREV06 - 40 Chapter 6 Applications of Integration Review...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 40 Chapter 6 Applications of Integration Review Exercises for Chapter 6 5 1. A 1 y 1 dx x2 1 x 5 1 4 5 1 3. A 1 1 x2 1 1 dx arctan x 1 1 (1, 1) 4 5, , 2 3 4 4 y 2 1 25 x (1, 0) (5, 0) 2 1, 1 2 1 1, 1 (−1, 0) 1 2 x 1 (1, 0) 1 2 5. A 2 0 x 12 x 2 x3 dx 14 x 4 1 7. A 0 e2 xe 2 ex dx 2 2 1 2 ex 0 0 e2 y y 1 (0, e 2) 6 (2, e 2) 1 (1, 1) x 4 1 (0, 0) 1 1 (0, 1) x 1 1 2 3 ( 1, 1) 5 4 8 9. A 4 sin x cos x 1 2 4 2 cos x d x 5 4 4 11. A 0 8 3 16x 0 8x x2 x2 8x 3 dx sin x 1 2 1 2 1 2 2x 2 d x 23 x 3 8 0 8x 2 20 512 3 170.667 22 −4 (8, 3) (0, 3) 10 − 16 Review Exercises for Chapter 6 2 2 41 13. y A 1 1 x 1 x dx 2x 1 4 32 x 3 2 2 (0, 1) −1 0 1 2 (1, 0) 1 0 x dx 12 x 2 1 0 −1 x 1 6 0.1667 15. x A y2 0 2y ⇒ x 1 1 1 1 2y d y y 1 1 2 ⇒y 1± 0 x 1 3 y x y2 x 2 1 dx 1 2x y2 13 y 3 1 dx (0, 2) 2 0 2 A 0 0 2y 0 y2 dy 4 3 1 (0, 0) −2 −1 −1 x 2 2 17. A 0 2 0 1 x dx 2 1 3 x 2 3 2 3 y dx 2 1 x 2 dx 3 2 x dx 2y (0, 1) (3, 1) y y A 1 x 1 x ⇒x 2 2⇒x y 2 2 y 2 32 y 2 1 0 (2, 0) x 2, y 1 1 3 2y d y 3 2 0 1 3y d y 0 19. Job 1 is better. The salary for Job 1 is greater than the salary for Job 2 for all the years except the first and 10th years. 21. (a) Disk 4 (b) Shell x2 dx 0 V y 4 3 x3 3 4 0 64 3 4 V y 4 3 2 0 x2 dx 23 x 3 4 0 128 3 2 1 x 1 2 3 4 2 1 x 1 2 3 4 —CONTINUED— 42 Chapter 6 Applications of Integration 21. —CONTINUED— (c) Shell 4 (d) Shell 4 V 2 0 4 4 4x 0 x x dx x2 dx x3 3 4 0 V 2 0 4 6 6x 0 x x dx x2 dx 13 x 3 4 0 2 2 y 4 3 2 64 3 y 5 4 3 2x 2 2 3x 2 160 3 2 1 x 1 2 3 2 1 x 1 −1 2 3 4 5 23. (a) Shell 4 (b) Disk x 0 V 4 3 3 4 4 16 2 16 3 x2 dx 4 V 64 0 2 0 3 4 2 16 x3 3 4 x2 48 0 dx 1 2 y 4 x2 32 9 8 16x y 4 2 1 −3 −2 −1 −2 −4 x 1 2 3 −3 −2 −1 2 1 x 1 2 3 −2 −4 25. Shell 1 y V 2 0 1 0 x x4 2x x2 2 1 dx dx 1 1 1 2 0 x 1 arctan x 0 2 4 4 Review Exercises for Chapter 6 27. Shell u x dx V u2 2u du 6 43 y 3 2 1 x 1 −1 2 3 4 5 6 x 2 2 2 2 2 x 1 u3 1 x 2u du u 12 u 2 0 2 2 dx 4 4 0 2 u2 1 u 2 2u du u 3 3 1 4 20 3 u du 9 ln 3 42.359 −2 −3 4 0 u2 0 4 13 u 3 3u 3 ln 1 u 0 29. Since y ≤ 0, A 1 xx 1 d x. 31. From Exercise 23(a) we have: V 1 V 4 y0 64 ft 3 16 16 1 9 u x dx A x u du 1 1 Disk: 3 1 1 16 9 9 y0 y2 dy y2 dy 13 y 3 27 y0 3 u 0 1 u du 0 u3 2 4 15 u1 2 du 1 9 9 3 2 52 u 5 y 2 32 u 3 1 0 9y 9y0 13 y 30 y03 9 27 9 0 −1 x 27y0 By Newton’s Method, y0 −1 1.042 and the depth of the 1.958 ft. gasoline is 3 1.042 33. fx fx 1 fx 2 4 54 x 5 x1 4 1 1 u 2u 4 35. y x x 1 2 y 300 cosh x 2000 280, 2000 ≤ x ≤ 2000 3 x sinh 20 2000 2000 u x dx s s 2000 1 1 20 2000 3 x sinh 20 2000 400 9 sinh2 2 dx 1 du 3 2000 x dx 2000 4018.2 ft (by Simpson’s Rule or graphing utility) uu 1 du 1 0 3 x dx 2 1 2 1 u3 2 2 52 u 5 u1 2 du 2 32 u 3 3 1 2 4 32 u 3u 15 3 5 1 8 1 15 63 6.076 44 Chapter 6 3 x 4 y 1 y 2 Applications of Integration 37. y 39. F 3 4 25 16 4 kx k1 4x 5 5 4 F W 4x d x 0 2x 2 0 S y 4 2 0 3 x 4 25 dx 16 15 8 x2 4 2 0 15 50 in lb 4.167 ft lb (4, 3) 3 2 1 x 1 2 3 4 41. Volume of disk: Weight of disk: 62.4 Distance: 175 W 62.4 9 150 1 3 2 y 1 3 2 43. Weight of section of chain: 5 x Distance moved: 10 y W 62.4 9 ton y2 2 150 0 10 x x dx 5 10 2 250 ft lb 10 5 0 10 x 2 0 y 175 y dy 163.4 ft 175y 0 104,000 ft b lb 45. W a 4 F x dx a x 2dx 0 80 a ax3 3 4 0 64 a 3 3 80 64 a 15 4 3.75 a 47. A 0 a 1 A x y 6 a2 6 a2 a x 2 dx 0 a 2 a x1 2 x dx ax 4 3 a x3 2 12 x 2 a 0 a2 6 x 0 a a a 0 x 2 dx 4 6 a2 dx 6ax a ax 0 2 a x3 2 x2 dx a y 61 a2 2 3 a2 a x ( x, y ) a2 0 4a 3 2x 1 2 8 32 32 ax 3 4a 1 2x 3 2 8 12 52 ax 5 x2 dx 13 x 3 a 0 a x 32 ax a2 x, y aa , 55 3ax 2 a 5 R eview Exercises for Chapter 6 49. By symmetry, x 1 45 0. x2 dx 2 a 2x x3 3 a 0 y A 1 A y 2 0 a2 4a 3 3 a2 3 4a 3 31 4a 3 2 6 8a 3 a a ( x, y ) a2 a x2 2 dx x4 dx 15 x 5 15 a 5 a 0 −a a x a4 0 2a 2x 2 2a 2 3 x 3 25 a 3 6 a 4x 8a 3 6 a5 8a 3 x, y 0, 2a 2 5 2a 2 5 51. y 0 by symmetry 4 3 2 y 1 y= 6x+1 For the trapezoid: m My 0 6 0 (6, 2) 46 6 16 1 x 6 12 x 3 1 2x d x 18 1 x 6 x3 9 1 x2 0 1 x 1 2 3 4 5 7 x dx 6 −1 −2 −3 −4 (6, −2) 60 For the semicircle: m My 6 1 2 8 2 x 2 2 8 4 x u 6 2 4 3 4 6 2 4 x 6 2 dx 6, u u2 du 16 3 2 6 x4 x 8, u 6 2 dx 2. Let u My x 2 6, then x 2 6 and dx u2 du 2 du. When x 2 0. When x 2 u 0 2 0 u4 2 4 2 12 0 4 44 3 u2 du 9 2 Thus, we have: x 18 2 1 2 u2 32 0 12 12 60 x 180 44 3 44 3 29 3 9 9 29 49 ,0 . 9 1 29 3 49 9 The centroid of the blade is 46 Chapter 6 Applications of Integration weight per cubic volume. g y dy d y 53. Let D F c surface of liquid; d D d y fy D Dfy c g y dy c yfy d g y dy d g c f ( x, y ) d yfy fy g y dy D c d g y dy x c c fy y g y dy Area D Area depth of centroid Problem Solving for Chapter 6 1. T R 0 12 cc 2 c 13 c 2 x2 dx cx2 2 x3 3 c 0 cx c3 2 c3 3 c3 6 T lim c→0 R 13 c 2 lim c→0 1 c3 6 1 3 3. (a) 1 V 2 2 0 1 1 41 y2 2 2 1 y2 1 4 y2 2 dy y2 1 y2 dy 4 0 1 y2 41 8 0 1 2 y2 dy 2 Integral represents 1 4 area of circle 4 R± 2 2 8 (b) x 1 V 2 R 2 r 4 y2 R ⇒V r2 ⇒ x r2 y2 r2 R y2 r2 y2 2 dy 0 r 4R r2 0 y2 dy 22 4R V 2 r 22 12 r 4 rR rR 5. V 22 r2 h2 4 x r2 22 r 3 h3 8 r x2 dx r r2 h2 4 2 r2 − h 4 r x2 + y2 = r2 2 4 3 x2 32 h 2 h3 which does not depend on r! 6 Problem Solving for Chapter 6 7. (a) Tangent at A: y y x3, y 1 y To find point B: x3 x Tangent at B: y y 1 2 47 3x2 3x 3x 1 2 x3 3x 0 0⇒B 2, 8 2 (b) Tangent at A a, a3 : y a3 3a2 x y 3a2x 2a3 2a 2a, 12a2 x 12a2x 16a3 x 4a a 2a 3 To find point B: x3 x 3a2x a 2 0 0⇒ 8a3 2a 16a3 0 0⇒ x B 3x x 2 2 3x2 Tangent at B: y 8a3 y x3, y 8 y 12 x 12x x3 2 16 12x 0 0⇒C 27 4 108 16 4, 64 16 To find point C: x3 x 12a2x 2a 2 To find point C: x3 x 1 C a 4a, 64a3 2a3 dx 3 12x 2 2 16 4 2 dx x3 dx area S area R Area of R 2a 4a x3 12a x 2a 2 3a2x 16a x 27 4 a 4 108a 4 Area of R 2 4 x3 12x 2 3x 16 Area of S Area of S x dx 3 Area of S Area of S 16 area of R 16 area of R x 9. s x (a) s x (b) ds ds (c) s x 2 1 ds dx 1 1 x f t 2 dt 1 fx 2 f x 2 dx fx 1 2 dx 31 t 2 2 1 2 dy dx x 2 dx 1 2 dx 2 dy 2 2 dt 1 1 2 9 t dt 4 22 27 1 to x 22 2. b (d) s 2 1 1 9 t dt 4 8 1 27 9 t 4 32 2 1 13 27 13 2.0858 This is the length of the curve y x3 2 from x 11. (a) y My 0 by symmetry 6 (b) m 1 x3 1 x2 6 2 1 6 1 dx x3 b2 b2 2b b 1 1 2b b 1 2 2b b 2, 0 1 x 1 6 1 x3 1 dx x3 12 7 dx 1 6 1 2 dx x2 2 1 x 6 1 5 3 My x 2 1 1 dx x2 1b 1 b2 m x y 3 2 1 2 1 35 36 12 ,0 7 2b b2 b→ x, y x, y ,0 53 35 36 x, y (c) lim x b→ lim 2b b 1 x −1 −2 −3 2 3 4 5 6 48 Chapter 6 area area Applications of Integration 2 3 4 1 6 1 12 2 1 2 7 1 2 15. Point of equilibrium: 50 x P0, x0 10, 80 80 13. (a) W (b) W 0.5x 80, p 0.125x 10 Consumer surplus 0 80 50 10 0 0.5x 0.125x dx 10 dx 400 1600 Producer surplus 17. (a) Wall at shallow end From Exercise 22: F (b) Wall at deep end From Exercise 22: F (c) Side wall From Exercise 22: F1 4 62.4 2 4 20 9984 lb 62.4 4 8 20 39,936 lb 20 15 y 62.4 2 4 40 y 10y d y y2 dy 624 4y 2 19,968 lb y=8 10 x = 40 F2 62.4 0 4 8 8y 0 5 624 y3 3 4 5 10 15 20 25 40 45 1 y = 10 x x 0 26,624 lb Total force: F1 F2 46,592 lb ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online