EVEN07 - CHAPTER 7 Integration Techniques, L’Hôpital’s...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CHAPTER 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.1 Section 7.2 Section 7.3 Section 7.4 Section 7.5 Section 7.6 Section 7.7 Section 7.8 Basic Integration Rules . . . . . . . . . . . . . . . . . . . 308 Integration by Parts . . . . . . . . . . . . . . . . . . . . . 312 Trigonometric Integrals . . . . . . . . . . . . . . . . . . . 321 Trigonometric Substitution . . . . . . . . . . . . . . . . . 328 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . 336 Integration by Tables and Other Integration Techniques . . 343 Indeterminate Forms and L’Hôpital’s Rule Improper Integrals . . . . . . . . 348 . . . . . . . . . . . . . . . . . . . . . 353 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 CHAPTER 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.1 Basic Integration Rules Solutions to Even-Numbered Exercises d ln x2 dx d 2x dx x2 1 d arctan x dx d ln x2 dx x x2 1 1 2 2. (a) (b) (c) (d) 1 C C C C 1 2x 2 x2 1 x2 1 1 x2 2x x2 1 1 2 x x2 x2 1 1 2x _ 21 x2 3x2 13 2x 2 x2 14 2 dx matches (a). 4. (a) (b) (c) (d) d 2x sin x2 dx d dx 1 sin x2 2 1 1 1 1 C C C C 2x cos x2 1 cos x2 2 1 cos x2 2 1 2x 1 2x 2 sin x2 1 2 2x2 cos x2 1 1 sin x2 1 x cos x2 1 d1 sin x2 dx 2 d dx 2x sin x2 1 2x x cos x2 1 2x 2x cos x2 2 sin x2 1 2 2x2 cos x2 1 sin x2 1 x cos x2 1 dx matches (c). 6. u 2t t2 t2 t 1 2 t du . u dt 2, du 2t 1 dt 8. u 2t 2t 2 12 4 dt 2dt, a 2 10. 2x x2 u Use x2 4 dx 1 2 1, du du a2 . 4, du 2x dx, n Use Use u2 un du. 12. u sec 3x tan 3x dx 3x, du 3 dx 14. u 1 x x2 x, du 4 dx dx, a 2 . Use sec u tan u du. Use u du u2 a2 308 S ection 7.1 16. Let u 6x x 4, du 6 x dx. x 4 6 Basic Integration Rules dt. 2 t 9 2 309 18. Let u 4 5 dx C 6 x 6 4 6 t 2 t 9 9, du 2 4 5 dx C dt dt t 2 9 C 20. Let u 4 x4 2x2, du 2x2 dx 4x dx. 1 4 1 4 6 4 2x2 2x2 12 22. 4x d x C x 3 2x 3 2 dx x dx x2 2 x2 2 3 2 2x 3 1 1 3 C C 2 2 dx 3 2x 2 32 3 2 2x 3 24. Let u x2 x x2 2x 1 2x 4, du 4 dx 1 2 2x x2 x2 1 dx. 2x 2x 4 4 12 2x 1 dx C 26. 2x x 4 1 3x dx 2 dx 8 x 4 dx 2x 8 ln x 4 C 28. 1 1 3x 1 dx 1 1 3 dx 3 3x 1 1 ln 3x 3 1 1 1 3 dx 3 3x 1 1 C 1 3x ln 3 3x 1 1 C 1 ln 3x 3 30. x1 1 x 3 x1 3 x 3 x2 1 dx x3 x 3 3 x 1 dx x2 12 x 2 3x 3 ln x 1 x C 32. sec 4x dx 1 4 sec 4x 4 dx tan 4x C 34. Let u cos x, du sin x dx cos x sin x dx. cos x 2 cos x 12 1 ln sec 4x 4 sin x dx C e e x x 36. Let u cot x, du csc2 xecot x dx csc x dx. ecot x csc2 x dx ecot x C 2 38. 5 3ex 2 dx 5 5 1 3ex e 3 x 2 2e x dx dx 2e x x 5 23 5 ln 3 2 1 2e 2e x dx C 310 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals sin x dx cos x tan x dx 1 cos sin 40. Let u ln cos x , du 42. d csc ln csc d cot cot d ln sin C tan x ln cos x dx ln cos x ln cos x 2 2 tan x dx C 44. 2 3 sec x 1 dx 1 2 3 sec x 1 sec x sec x 1 dx 1 46. 3 t2 1 dt 3 arctan t C 2 sec x 1 dx 3 tan2 x 2 sec x dx 3 tan2 x 2 cos x dx 3 sin2 x 2 3 1 sin x 2 csc x 3 2 cot2 x dx 3 2 3 csc2 x 2 x 3 x C 1 dx C 2 cot x 3 cot x 48. Let u 1 4 3 x, du 3x2 dx 3 dx. 1 34 1 arctan 23 3 3x 2 50. Let u dx C 1 , du t e1 t dt t2 1 dt. t2 e1 t 1 dt t2 e1 t C 3x 2 52. x 1 1 4x2 8x 3 dx 2x 1 2 2x 1 2 1 dx arcsec 2 x 1 C 54. 1 dy dx (a) 1 4x x2 dx 1 5 x2 4x 4 dx 5 1 x 2 2 dx arcsin x 2 5 C a 5 56. tan2 2x , 0, 0 y 1 (b) tan2 2x dx sec2 2x 1 dx 1 tan 2x 2 1.2 x C 0, 0 : 0 −0.6 x 0.6 C 1 tan 2x 2 − 1.2 1.2 y −1 x − 1.2 58. (0, 1) 5 60. r 1 et e t et 2 dt 1 2et et e t e2t dt −2 −2 2 2 et dt 2t et C S ection 7.1 62. Let u y 2x, du 1 x 4x2 arcsec 2x 2 dx. dx C 1 dx. x e 2 Basic Integration Rules cos t dt. 13 sin t 3 0 311 64. Let u 2 2x 2 sin t, du sin2 t cos t dt 1 2x 1 dx 0 0 66. Let u e 1 1 1 x ln x, du ln x dx 1 68. 1 x x 2 2 dx 1 1 x 2 dx x 2 1 1 1 2 ln x ln x 2 1 dx x e 1 2 ln x 1 1 ln 4 0.386 1 2 4 70. 0 1 25 x x2 2 dx arcsin x 5 4 arcsin 0 4 5 0.927 6 72. x2 4x 13 dx 1 ln x2 2 4x 13 4 x2 arctan 3 3 C ` −10 10 The antiderivatives are vertical translations of each other. −6 74. ex 2 e x3 dx 1 3x e 24 9ex 9e x e 3x C 76. sec u tan u du sec u C The antiderivatives are vertical translations of each other. 5 −5 5 −5 78. Arctan Rule: du a2 u2 4 1 arctan a a C 80. They differ by a constant: sec2 x 2 C1 tan2 x 1 2 C1 tan2 x C. 82. f x 5 13 x 5 7x2 10x 84. 0 4 x2 1 dx 4 86. A 0 sin 2x dx 1 cos 2x 2 y f x dx < 0 because 0 Matches (d). y 2 0 1 more area is below the x-axis than above. 3 5 2 1 0 5 x 1 −5 2 3 4 1 2 1 x π 4 π 2 312 2 Chapter 7 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 88. 0 2 x2 dx (a) Let f x 2 x2 over the interval 0, 2 . 2 2 x over the (b) Let f x interval 0, 2 . Revolve this region about the x-axis. 2 x over the interval (c) Let f x 0, 2 . Revolve this region about the y-axis. 2 A 0 y 2 x2 dx V 2 x dx 0 2 2 V 2 0 2 x x dx 2 x2 dx 25 20 15 10 f ( x) = 2π x 2 0 2 y x2 dx y 0 3 5 x 1 2 2 f ( x) = 2x 2 f ( x) = x 1 1 x x 1 2 3 1 2 90. (a) (b) 1 n 1 3 3 n 0 sin nx dx 0 3 31 1 0 n sin nx n dx 3 3 1 n cos nx 2 0 1 x2 dx 1 arctan x 6 1 arctan 3 3 x2 3 92. y y 1 y 2 2x 1 x 1 2 0 9 94. y y 2 3x1 1 8 3 1 x 9 x x 1 x x 1 dx 1 32 9 0 1 1 dx y 2 4 9x 2 1 3 S 2x 2x 0 s 1 4 dx 9x2 3 7.6337 2 4 2 x 3 8 10 10 3 y 12 9 6 3 x 3 6 9 12 1 256.545 Section 7.2 2. d2 x sin x dx Integration by Parts 2x cos x 2 sin x x2 cos x 2x sin x 2x sin x 2 cos x 2 cos x x2 cos x. Matches (d) S ection 7.2 d dx 1 x Integration by Parts 313 4. x x ln x 1 x ln x ln x. Matches (a) 6. u x2 e2x dx x2, dv e2x dx 8. u ln 3x dx ln 3x, dv dx 10. u x2 cos x dx x2, dv cos x dx 12. dv u 2 e x x dx ex x dx ⇒ v e dx x dx e x 14. e1 t dt t2 e1 t 1 dt t2 e1 t C ⇒ du 2 xe 2 xe 2xe x x dx x e 2e x5 5 1 dx x x x dx 2 xe x e x C C 1 dx. x ln x 3 16. dv u x 4 dx ⇒ ln x v 18. Let u ln x, du 1 dx x ln x 3 ⇒ du x5 ln x 5 x5 ln x 5 1 dx x 1 2 ln x 2 C x 4 ln x dx x5 1 dx 5x 15 x 25 1 dx x2 1 dx x 1 dx x2 ln x x C x5 ln x 5 x5 5 ln x 25 14 x dx 5 1 C 20. dv u 1 dx ⇒ x2 ln x v 1 x ⇒ du ln x x x ln x dx x2 1 x C 22. dv u x2 x2 x2e x3ex 2 1 x2 2 dx ⇒ v x2 2x3e 2 1 x2 2 x dx x2 1 2 x2 2xe x2 2 1 1 dx ex 2 2 ⇒ du 2 2xe 2 dx x2 1 dx x2ex 2 x2 1 1 dx x2 1 dx x 1 dx x2 xex dx x2ex 2 x2 1 C ex 2 x2 2 1 C 24. dv u 1 dx ⇒ v x2 ln 2x ⇒ du 1 x ln 2x dx x2 ln 2x x ln 2x x 1 x C ln 2x x 1 C 314 Chapter 7 1 2 x x 2 3x dx 3x Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 2 3 26. dv u dx ⇒ v dx 3x 3x 2 3x 1 2 dx 2 3x ⇒ du 2x 2 3 2x 2 3 2 3 4 2 27 2 3x dx 3x 32 C 2 2 3x 9x 27 22 3x C 2 2 3x 3x 27 4 C 28. dv u sin x dx ⇒ x v cos x dx cos x dx x cos x sin x C ⇒ du x cos x x sin dx 30. Use integration by parts twice. (1) u x2, du x2 cos x dx 2x dx, dv x2 sin x cos x dx, v 2 x sin x dx sin x (2) u x, du x2 cos x dx dx, dv sin x dx, v 2 x cos x cos x cos x dx 2 sin x C x2 sin x x2 sin x 2x cos x 32. dv u sec tan d ⇒ v d sec tan d sec 34. dv u dx ⇒ v dx 1 1 x dx x 1 1 x2 x2 ⇒ du sec tan d sec sec arccos x ⇒ du 4 x arccos x 4 x arccos x x2 sec d 4 arccos x dx ln sec tan C dx C 36. Use integration by parts twice. (1) dv u e x dx ⇒ v e x dx ex (2) dv u ex cos 2x 2 ex sin 2x e x dx ⇒ v e x dx ex cos 2x ⇒ du ex cos 2x ex cos 2x ex cos 2x 5 v x 1 dx x 2 sin 2x dx 2 ex sin 2x dx 2ex sin 2x 2 sin 2x C sin 2x ⇒ du 2 cos 2x dx ex cos 2x dx 5 e x cos 2x dx e x cos 2x dx 2 ex cos 2x dx 38. dv u y y dx ⇒ ln x ⇒ du ln x ln x dx x ln x x 1 dx x x ln x x C x 1 ln x C S ection 7.2 40. Use integration by parts twice. (1) dv u (2) dv u y x2 x x x2 x 22 xx 3 22 xx 3 1 1 1 dx 32 Integration by Parts 315 x 1 dx ⇒ v x 2x dx v dx x 1 1 2 dx 2 x 3 1 32 ⇒ du 1 3 2dx ⇒ 1 3 2 dx 2 x 5 1 52 ⇒ du 4 xx 3 8 xx 15 1 1 3 2 dx 22 xx 3 16 x 105 1 1 72 32 42 xx 35 C 2x 1 105 1 52 2 5 x 12x 1 5 2 dx 32 32 52 15x2 8 C 42. dv u y dx arctan ⇒ v dx x 1 x2 x 2 1 dx 2 2x 4 dy dx y x2 2 4 dx x2 dx x 2 18 37 ln 4 x2 C x ⇒ du 2 x dx 2 1 2 arctan x arctan x arctan 44. (a) 4 y (b) e e x3 sin 2x, 0, sin 2x dx x3 −6 x 4 Use integration by parts twice. (1) u sin 2x, du e x3 x3 2 cos 2x 3e 3e x3 −4 dv e (2) u dv e dx, v sin 2x dx x3 sin 2x 6e x3 cos 2x dx cos 2x, du e x3 x3 2 sin 2x 3e 3e x3 dx, v sin 2x dx x3 sin 2x 6 3e x3 cos 2x 6e x3 sin 2x dx C 37 e y e x3 sin 2x dx sin 2x dx 3e 1 37 1 0 37 18e x3 sin 2x x3 18e x3 cos 2x x3 C C x3 3e sin 2x 18e cos 2x 0, y 18 18 : 37 37 x3 18 x3 C⇒C 0 1 3e 37 sin 2x cos 2x 316 dy dx Chapter 7 x sin x, y 0 y Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 46. 4 8 (0, 4) 48. See Exercise 3. 1 1 x2e x dx 0 −5 −2 10 x2e x 2xe x 2e x 0 e 2 0.718 50. dv u sin 2x dx ⇒ x v sin 2x dx dx 1 2 1 cos 2x 2 52. dv u x dx ⇒ v x dx x2 2 ⇒ du arcsin x2 ⇒ du x sin 2x dx 1 x cos 2x 2 1 x cos 2x 2 1 sin 2x 4 2x dx 1 x4 x3 1 1 21 4 1 x4 dx 12 cos 2x dx x arcsin x2 dx C 1 sin 2x 4 x2 arcsin x2 2 x2 arcsin x2 2 x4 x4 1 C C x4 1 0 2x cos 2x 1 sin 2x 4 C 12 x arcsin x2 2 Thus, 0 x sin 2x dx 2x cos 2x 0 2 . Thus, 1 x arcsin x2dx 0 12 x arcsin x2 2 1 4 2. 54. Use integration by parts twice. (1) dv e (2) dv e x x e x, v cos x dx e x e x, u e x cos x, du cos x e x sin x dx sin x dx cos x dx x dx, v e x, u e x sin x, du e cos x dx cos x sin x e x cos x dx ⇒ 2 e x cos x dx e x sin x e x cos x Thus, 2 e 0 x cos x dx e e 2 x sin x 2 2 e x cos x 2 0 sin 2 cos 2 1 2 56. dv u dx ln 1 ⇒ v dx 2x 1 x2 x2 2 x2 x dx 2x2 dx 1 x2 1 1 1 x2 dx x ln 1 x2 2x 2 arctan x C x2 ⇒ du x ln 1 x ln 1 ln 1 x2 dx 1 1 Thus, 0 ln 1 x2 dx x ln 1 x2 2x 2 arctan x 0 ln 2 2 2 . S ection 7.2 58. u x, du x sec2 x dx dx, dv x tan x sec2 x dx, v tan x dx 0 Integration by Parts 317 tan x Hence, 4 4 x sec x dx 2 x tan x ln ln cos x 0 4 4 1 e 2 1 e 8 2x 2 2 0 1 ln 2 2 60. x 3e 2x dx x3 2x 3x2 6x2 1 e 4 2x 6x 3 C 1 e 8 2x 6 1 e 16 2x C Alternate signs u and its derivatives x3 3x2 6x 6 0 v and its antiderivatives e 2x 4x3 6x 1 2x 2e 1 2x 4e 1 2x 8e 1 2x 16 e 62. x3 cos 2x dx x3 1 sin 2x 2 3x2 1 cos 2x 4 6x 1 sin 2x 8 3 cos 2x 8 3 cos 2x C 6 1 cos 2x 16 C Alternate signs u and its derivatives x3 3x2 6x 6 0 1 16 13 x sin 2x 2 13 4x sin 2x 8 32 x cos 2x 4 6x2 cos 2x 3 x sin 2x 4 6x sin 2x v and its antiderivatives cos 2x 1 2 C sin 2x 1 4 1 8 cos 2x sin 2x cos 2x 64. x2 x 2 32 dx 22 xx 5 2 x 315 2 2 52 8 xx 35 35x2 40x 2 72 16 x 315 C 2 92 C Alternate signs u and its derivatives x2 2x 2 0 v and its antiderivatives x 2 5 4 35 8 315 52 32 2 2 32 52 72 92 x x x 2 2 66. Answers will vary. See pages 488, 493. 1 5 68. Yes. u ln x, dv 70. No. Substitution. x dx 72. No. Substitution. 74. 4 sin d 4 cos 4 3 sin 12 2 cos 24 sin 24 cos C 5 76. 0 x 4 25 x2 3 2 dx 1,171,875 arcsin x 5 128 14,381.0699 x 2x2 25 25 16 x2 52 625x 25 x2 64 32 46,875x 25 128 x2 5 0 318 Chapter 7 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals x dx ⇒ 2 4 3 78. (a) dv u x x 4 4 v dx x x 32 4 x 12 dx x 32 ⇒ du x dx 2 x4 3 2 x4 3 2 3 4 x x 3 2 dx 32 4 4 15 du u3 C x 52 C 2 4 15 x 32 3x 8 C (b) u 4 x4 x⇒x x dx u u 25 u 5 2 4 and dx 4 u1 2du 83 u 3 x 32 2 2 4u1 2 2 du 20 2 4 15 C x 32 23 u 15 20 3u C 2 4 15 34 3x 8 C 80. (a) dv 4 x dx ⇒ v 4 2 4 3 x 1 2 dx 82. n n n 0: 1: 2: ex dx xex dx x2ex dx ex xex C ex C xex 2ex C ex dx x 32 u x x dx ⇒ du 2 x4 3 2 x4 3 2 4 15 2 4 15 dx x2ex x2ex x 52 2xex x4 x x x x 32 2 3 4 x 3 2 dx 2 xex dx 3x2ex 6xex 6ex C 32 4 4 15 5x 3x 24 8 du C n 3: x3ex dx x3ex x3ex C 3 x2e x dx 32 x C 32 (b) u 4 x4 x⇒x x dx n u and dx 4: x 4ex dx x 4ex 4x3ex 12x2ex 24xex 24ex C 4 4 u 2 u du u3 25 u 5 2 x 4ex du C C 34 8 x C C 4 x3ex dx xnex n xn 1ex dx. 4u1 83 u 3 2 In general, x nex dx (See Exercise 86) 2 23 u 15 2 4 15 2 4 15 2 20 x x 32 3u 20 3x 32 84. dv u xn cos x dx ⇒ xn cos x dx v sin x nxn n 1 86. dv dx 1 eax dx ⇒ v x n ⇒ du 1 ax e a nx n n a 1 ⇒ du xn sin x u sin x dx dx 1 ax xn x neax dx x neax a xn e dx S ection 7.2 88. Use integration by parts twice. (1) dv u eax dx ⇒ v 1 ax e a b sin bx b a eax sin bx dx b2 a2 eax cos bx a eax cos bx dx (2) dv u b eax sin bx a a eax dx ⇒ v Integration by Parts 319 1 ax e a b cos bx cos bx ⇒ du eax cos bx a eax cos bx a sin bx ⇒ du b a eax cos bx dx eax cos bx dx beax sin bx a2 Therefore, 1 b2 a2 eax cos bx dx eax cos bx dx eax a cos bx b sin bx a2 eax a cos bx b sin bx a2 b2 C. 90. n 2 (Use formula in Exercise 84.) x2 cos x dx x2 sin x x2 sin x 2 x sin x dx (Use formula in Exercise 83.) n 2 x cos x cos x dx x2 sin x 2x cos x 1 2 sin x C 92. n 3, a 2 (Use formula in Exercise 86 three times.) x3e2x 2 x3e2x 2 x3e2x 2 e2x 3 4x 8 3 2 x2e2x dx n 3, a n 1 2 C 2 2, a 2 x3e2x 2 3x2e2x 4 3xe2x 4 3e2x 8 Cn 1, a 2 x3e2x dx 3 x2e2x 22 3x2e2x 4 6x2 xe2x dx 3 xe2x 22 6x 3 e2x dx 94. dv u A e x 1 9 1 9 1 9 x3 dx ⇒ v 3e dx x3 96. A 0 x sin x dx x cos x sin x 0 ⇒ du 3 See Exercise 83. 3 xe 0 x3 dx x3 3 3 3xe 9 e 1 e 1 e 3 0 x3 3 0 e x3 dx −1 −1 4 9e 1 0 1 2 e 0.264 0.4 −1 4 − 0.1 320 Chapter 7 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals y 98. In Example 6, we showed that the centroid of an equivalent region was 1, 8 . By symmetry, the centroid of this region is 8, 1 . You can also solve this problem directly. 1 π 2 A 0 2 arcsin x dx 2 2 x x arcsin x 0 1 1 1 x2 1 Example 3 0 1 x 2 8 x y My A Mx A 1 x 0 1 0 2 2 arcsin x dx arcsin x 2 2 2 arcsin x dx 1 2 100. (a) Average 1 4 1.6t ln t 1 dt 0.8t2 ln t 0.4t2 t 1 4 3.2 ln 2 0.2 2.018 (b) Average 3 1.6t ln t 1 dt 0.8t2 ln t 0.4t2 t 3 12.8 ln 4 7.2 ln 3 1.8 8.035 102. c t 5 30,000 30,000 0 500t, r 500t e t, dv 60 t 0.07t 7%, t1 dt 500 5 5 P 60 0 te 0.07t dt 0.07t. Let u P 60 500 e 0.07t dt, du 0.07t dt, v 5 0 5 100 e 7 100 7 5 100 e 7 100 e 7 e 0 0.07t dt 5 500 60 t 0.07t 0 10,000 e 49 2 sin nx n3 n 0.07t 0 $131,528.68 104. x 2 cos nx dx x2 sin nx n 2 cos n n2 4 cos n n2 4 4 1 n4 n2 2x cos nx n2 2 cos n2 n2 , if n is even n2 , if n is odd 106. For any integrable function, f x dx C f x dx, but this cannot be used to imply that C 2 2 0. 108. On 0, 2 , sin x ≤ 1 ⇒ x sin x ≤ x ⇒ 0 x sin x dx ≤ 0 x dx. Section 7.3 110. f x cos x, f 0 2 (b) You obtain the points n 0 1 2 3 xn 0 0.05 0.10 0.15 2 2.05 2.098755 2.146276 0 0 Trigonometric Integrals 321 (a) It cannot be solved by integration. yn 4 4 80 4.0 2.8403565 Section 7.3 2. (a) y Trigonometric Integrals sec x tan x sin x sec2 x. (b) y cos x sec x ⇒ y sin x sin x sin x 1 sec x tan x sec2 x sin x sec2 x sec x ⇒ y Matches (iii) sin x tan2 x Matches i (c) y x tan x 13 tan x ⇒ y 3 1 sec2 x tan2 x tan2 x sec2 x tan2 x 1 tan2 x tan4 x Matches iv (d) y y 3x 3 3 2 sin x cos3 x 2 cos x cos3 x 3 sin x cos x ⇒ 6 sin x cos2 x cos2 x sin x 3 cos2 x 3 cos2 x 31 3 sin2 x cos2 x 2 cos4 x 6 cos2 x 1 8 cos4 x Matches ii 4. cos 3 x sin4 x dx cos x 1 sin4 x sin5 x 5 sin2 x sin4 x dx sin6 x cos x dx sin7 x 7 C 6. Let u cos x, du sin3 x dx sin x dx. sin x 1 cos2 x 1 cos3 x 3 cos2 x dx sin x dx cos x C sin x dx 8. Let u x sin , du 3 cos3 x dx 3 3 1 x cos dx. 3 3 cos 1 x 3 x 3 x 3 1 sin2 x 3 sin2 x dx 3 1 x dx cos 3 3 C C 3 sin 3 sin 1 3x sin 3 3 sin3 x 3 322 Chapter 7 sin5 t dt cos t Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 10. sin t 1 sin t 1 cos t cos2 t 2 cos t 12 dt 12 2 cos2 t 12 cos4 t cos t 32 dt sin t dt 2 cos t 12 2 cos t cos t 72 4 cos t 5 1 1 4 1 4 1 4 13 42 3 8 52 2 cos t 9 1 92 C 12. sin2 2x dx 1 1 4x 8 cos 4x dx 2 sin 4x 1 x 2 C 1 sin 4x 4 C 14. sin4 2 d cos 4 2 1 1 3 2 cos 4 d 2 cos2 4 1 d d d C C 2 cos 4 2 cos 4 2 cos 4 1 sin 4 2 1 sin 4 8 cos 8 2 1 cos 8 2 1 sin 8 16 1 sin 8 64 16. Use integration by parts twice. dv u dv u sin2 x dx x2 ⇒ du sin 2x dx ⇒ x 1 cos 2x ⇒v 2 2x dx v 1 cos 2x 2 dx sin 2x 12 x sin 2x 4 12 x sin 2x 4 12 x sin 2x 4 6x2 sin 2x 1 2 13 x 3 1 2 2x2 1 2 x sin 2x dx x sin 2x dx 1 2 cos 2x dx C C 2 2 x 2 sin 2x 4 1 2x 4 sin 2x ⇒ du 12 x 2x 4 13 x 2 13 x 6 13 x 6 1 4x3 24 x2 sin2 x dx 1 x cos 2x 2 1 x cos 2x 4 6x cos 2x 1 sin 2x 8 3 sin 2x 18. Let u sin x, du 2 cos x dx. 2 20. 0 sin2 x dx 1 2 1 0 cos 2x dx 2 0 cos5 x dx 0 0 2 1 1 0 sin2 x 2 cos x dx 2 sin2 x 23 sin x 3 sin4 x cos x dx 15 sin x 5 2 0 1 x 2 1 sin 2x 2 4 sin x 8 15 S ection 7.3 1 tan 2x 2 Trigonometric Integrals 323 22. sec2 2x 1 dx 1 C 24. sec6 3x dx 1 1 tan2 3x 2 sec2 3x dx 2 tan2 3x tan4 3x sec2 3x dx 1 tan5 3x 15 C 1 tan 3x 3 x x sec2 dx 2 2 23 tan 3x 9 1 x tan4 2 2 26. tan2 x dx sec2 x 1 dx tan x x C 28. tan3 C 30. Let u tan3 2t sec 2t, du sec3 2t dt 2 sec 2t tan 2t sec2 2t sec4 2t sec5 2t 10 1 sec3 2t tan 2t dt 32. tan5 2x sec2 2x dx 1 tan6 2x 12 C sec2 2t sec 2t tan 2t dt sec3 2t 6 C 34. sec2 x x tan dx 2 2 2 sec sec2 x 2 x1 x x sec tan dx 22 2 2 C x1 x sec2 dx 22 2 C 36. tan3 3x dx sec2 3x 1 tan 3x dx 1 3 C 3 sin 3x dx cos 3x 1 tan 3x 3 sec2 3x dx 3 12 tan 3x 6 1 ln cos 3x 3 or sec2 x x tan dx 2 2 2 tan tan2 x 2 38. tan2 x sec5 x sin2 x cos2 x sin2 x sin2 x 1 sin2 x sin3 x 3 cos5 x dx cos3 x dx sin2 x cos x dx sin4 x cos x dx sin5 x 5 C 40. s sin2 1 1 4 1 8 1 2 16 2 cos2 2 d 1 1 8 C C cos 2 1 d cos 2 d 1 cos2 4 d cos 2 d sin2 sin 2 2 sin 2 42. y tan x sec4 x dx tan1 2 x tan2 x tan5 2 x 2 72 tan x 7 1 sec2 x dx tan1 2 x sec2 x dx 2 32 tan x 3 C 324 Chapter 7 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals dy dx y 1 4 tan x, du sec2 x dx 44. (a) 1 y (b) sec2 x tan2 x, 0, sec2 x tan2 x dx u tan3 x 3 C 1 4 −1 x 1 () 0, 4 1 −1 y 0, 1 : 4 C⇒y 13 tan x 3 1 4 46. dy dx 3 y tan2 x, y 0 8 3 48. cos 4 cos 3 d 1 2 cos 4 cos 3 d cos 7 sin 2 cos C d (0, 3) −1 −2 1 sin 7 14 50. sin 4x cos 3x dx 1 2 1 2 sin 4x cos 3x dx sin x cos x sin 7x dx 1 cos 7x 7 cos 7x C C 52. Let u x tan , du 2 tan4 x 1 sec2 dx. 2 2 tan4 2 x x tan2 2 2 x 2 tan4 1 sec2 x 2 x dx 2 x x sec4 dx 2 2 tan6 x 1 sec2 dx 2 2 C 1 7 cos x 14 2 7x tan 7 2 cot3 t dt csc t cos3 t dt sin2 t cos t dt sin2 t 1 sin t csc t sin t sin t 1 2 5x tan 5 2 54. u cot 3x, du 3 csc2 3x dx 1 3 cot 3x 3 csc2 3x dx C 56. sin2 t cos t dt sin2 t csc2 3x cot 3x dx cos t dt C C 12 cot 3x 6 58. sin2 x cos2 x dx cos x 1 sec t dt cos t 1 1 2 cos 2 x dx cos x sec x 2 cos x dx ln sec x tan x 2 sin x C 60. cos t 1 dt cos t 1 cos t sec t dt ln sec t tan t C 62. 0 3 3 tan2 x dx 0 sec2 x 3 1 dx tan x x 0 3 3 64. Let u tan t, du 4 sec2 t dt. 2 32 tan t 3 4 0 66. 2 3 sin 3 cos d 1 2 sin 4 11 cos 4 24 sin 2 d 1 cos 2 2 0 sec2 t tan t dt 0 S ection 7.3 2 2 Trigonometric Integrals 325 68. 2 sin2 x 1 dx 2 2 2 1 3 2 cos 2x 2 1 dx 3 x 2 1 sin 2x 4 2 2 1 cos 2x dx 2 3 2 tan2 1 2 x 70. sin2 x cos2 x dx 2 1 4x 32 sin 4x C 72. tan3 1 x dx 2 ln cos 1 x C −6 6 −3 3 −2 −2 74. sec4 1 x tan 1 2 x dx sec4 1 4 x 2 C 76. 0 1 cos 2 d 3 2 3 4 2 sin 2 1 sin 2 4 2 0 − 3.5 3.5 −2 2 78. 0 sin6 x dx 1 5x 82 2 sin 2x 3 sin 4x 8 13 sin 2x 6 2 0 5 32 80. See guidelines on page 500. 82. (a) Let u tan x, du sec2 x tan x dx Or let u sec x, du sec2 x d x. 12 tan x 2 C1 −4 −2 4 (b) 8 sec x tan x dx. 1 sec2 x 2 1 C C 12 tan x 2 y sec x sec x tan x dx (c) 1 sec2 x 2 C 1 tan2 x 2 1 2 C 12 tan x 2 C2 84. Disks Rx rx V tan x 0 4 1 1 2 2 0 4 tan x dx sec x 0 4 2 2 −1 2 −1 π 8 π 4 x 2 2 2 1 dx tan x 1 x 0 4 1.348 326 Chapter 7 2 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 2 86. (a) V 0 2 cos2 x dx cos x dx 0 2 1 0 2 cos 2x d x 1 2 x 1 sin 2x 2 2 0 2 4 (b) A Let u x sin x 0 x, dv 2 cos x dx, du dx, v 2 sin x. 2 2 x cos x dx 0 x sin x 0 0 sin x dx x sin x cos x 0 y 2 1 2 2 y 1 2 1 4 2 cos2 x dx 0 2 1 1 0 cos 2x d x 2 0 1 2 − (π 2 2 , π ( 8 1 x 4 x, y 2 1 sin 2x 2 2 , 8 8 π 4 π 2 x 88. dv u cos x dx ⇒ cosn 1 v sin x n n n n 1 x ⇒ du cosn cosn cosn 1 1 cosn 1 1 1 x sin x 2 x sin x dx 2 cosn x dx x sin x x sin x x sin x cosn cosn cosn cosn cosn n n x sin2 x dx x1 x dx 1 1 cos2 x dx n cosn cosn 2 1 2 1 2 1 x dx cosn x dx Therefore, n cosn x dx cosn x dx 1 x sin x n 2 2 n x dx. 90. Let u secn 2 x, du n secn secn secn 2 2 secn x tan x x tan x x tan x x tan x secn 2 x tan x dx, dv n n n n 2 2 2 n n 2 secn secn sec2 x dx, v 2 tan x. secn x dx x tan2 x dx 1 dx secn 2 2 2 x sec2 x 2 secn x dx secn 2 1 2 x dx n 1 secn x dx secn x dx secn 1 n 2 x dx 2 1 x tan x secn x dx 92. cos4 x dx cos3 x sin x 4 1 cos3 x sin x 4 3 4 cos2 x dx 3 cos x sin x 8 cos3 x sin x 4 3 x 8 C 3 cos x sin x 4 2 1 2 cos3 x sin x 8 1 2 dx 3x C 3 cos x sin x S ection 7.3 cos3 x sin3 x 6 cos3 x sin3 x 6 1 cos3 x sin3 x 6 1 8 cos3 x sin3 x 48 96. (a) n is odd and n ≥ 3. 2 Trigonometric Integrals 327 94. sin4 x cos2 x dx 1 2 1 2 cos2 x sin2 x dx cos3 x sin x 4 1 cos3 x sin x 8 6 cos3 x sin x 1 4 cos2 x dx x 2 3x C C 1 cos x sin x 8 2 3 cos x sin x cosn x dx 0 cosn n n n n n n n n n n n n 1 2 3 2 3 4 5 1 1 1 1 1 1 x sin x n 2 0 n n 2 0 1 0 2 cosn n n 3 2 2 0 6 2 x dx 2 cosn 3 x sin x n2 n n n n n n 1 n n 4 5 n n 3 2 3 2 3 2 3 2 3 2 n n cosn 0 4 x dx 2 cosn 5 x sin x n4 n n n n n n 5 4 2 n n x dx 5 4 cosn 0 6 x dx cosn 0 2 5... 4 cos x dx 0 2 0 5... sin x 4 5... 1 4 (Reverse the order) 6 ... n 1 7 n 6 ... n 1 7 n 2 (b) n is even and n ≥ 2. 2 cosn x dx 0 n n n 1 1 n 1 n 2 1 2 1 2 3 4 n n n n n n 3 4 3 2 3 2 3 2 n n n n n n 5... 4 cos2 x dx 0 (From part (a).) 2 0 5... x 4 2 5... 4 4 1 sin 2x 4 n (Reverse the order) 5 ... n 1 6 n 2 5 ... n 1 6 n 328 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.4 2. d 8 ln dx x2 Trigonometric Substitution 16 x 1 x x2 2 16 C 8 x x2 16 1 2 x 16 x 16 x2 x2 16 16 x 1 x 2 x x 2 16 x2 2 1 2 x2 x2 16 16 8x x 16 2 2x 16 2 x2 x2 16 2 x2 16 x2 2 x Indefinite integral: x2 x2 x 3 16 7 2 Matches (d) 16 4. x3 d 8 arcsin dx 4 6x x2 C 8 1 8 16 x x2 x x 6x 1 x 3 34 2 2 1 4 1 x 2 3 x x2 2 2 3 3 7 x 6x x 2 x2 3 1 2 2 7 6x x2 x 2 16 16 x3 16 3 2 16 2 16 2 16 16 7 Indefinite integral: 7 6x x2 dx Matches (c) 6x 9 2 16 32 x 32 3 x2 2 6x 9 6. Same substitution as in Exercise 5. 10 x2 25 x2 dx 10 5 cos 25 sin2 d 5 cos 2 csc2 5 d 2 5 cot C 2 25 5x x2 C 8. Same substitution as in Exercise 5 x2 dx 25 x2 25 sin2 5 cos 25 2 5 cos d C x 5 25 2 25 2 25 5 x2 1 cos 2 sin cos C d C 1 x 25 arcsin 2 5 x 25 x2 C 1 sin 2 2 25 x arcsin 2 5 10. Same substitution as in Exercise 9 x2 x 4 dx 2 tan 2 sec 2 tan 2 sec tan C 2 d x2 2 2 4 tan2 d x 2 2 sec2 C 1d x2 4 2 arcsec x 2 C arcsec Section 7.4 12. Same substitution as in Exercise 9 x3 x2 4 dx 8 8 3 8 sec3 2 tan 1 x2 2 2 sec tan tan2 4 sec2 3 x2 4 d 4 d 8 sec4 8 tan C 1 3 d tan3 3 x2 C 4 12 8 tan 3 x2 4 3 C Trigonometric Substitution 329 tan2 1 3 x2 C 4 x2 8 C 14. Same substitution as in Exercise 13. 9x3 dx 1 x2 9 tan3 sec sec2 sec2 d 3 9 C sec2 31 1 sec tan d x2 1 x2 3 9 sec3 3 C sec 31 x2 x2 C 2 C 3 sec 16. Same substitution as in Exercise 13 x2 dx 1 x2 2 1 2 x2 1 1 x2 dx 4 d x 1 x2 1 tan2 1 2 sec2 sec4 d sin2 d 1 2 C sin cos 1 arctan x 2 C x 1 x2 C cos 2 sin 2 2 1 x2 1 arctan x 2 18. Let u x, a 1 x 9 x2 1, and du x2 dx 1 2 9 24. Let u 16 x 16 26. Let u 1 1 t t2 4x2, du 4x2 dx t 2, du 32 dx. x2 ln x 1 x2 C 1 25 x2 1 x1 2 9 x2 x2 12 20. dx 12 2x dx (Power Rule) 22. dx arcsin x 5 C C 8x dx. 1 8 2t dt. 1 2 3 sec2 2 3 sec 8 9 cos sin4 1 t2 32 16 4x2 12 8x dx 1 16 12 4x2 32 C 2 4 3 x2 32 C dt 2t dt 1 1 3 sec . t2 C 28. Let 2x 3 tan , dx 4x2 x4 9 dx d, 4x2 9 4x 2 + 9 2x 3 2 sec2 d 3 2 4 tan4 d C C 32 θ 3 8 27 sin3 8 csc3 27 4x2 9 27x3 C 330 Chapter 7 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 2 sec2 d, sec2 4x2 16 4 sec . 30. Let 2x 4 tan , dx 16 dx 1 x 4x2 2 2 tan 1 4 d 4 sec 1 4 cot csc d C 1 ln 4 x2 x 4 2 C θ x2 + 4 x sec tan d 2 1 ln csc 4 32. Let x x2 3 tan , dx 1 3 32 3 sec2 d , x2 3 sec2 d 3 3 sec3 1 3 cos d C C 3 3 sec2 . dx x2 + 3 x θ 3 1 sin 3 x 3 x2 34. Let u x x2 1 2x x2 2, du 2x 2x 2 dx 3 2 dx. 1 2 x2 2x 2 12 2x 2 dx 12 x 3 2x 2 32 C 36. Let x 1 sin , x x x dx sin2 , dx cos 2 sin cos d , 1 x cos . 2 sin cos d sin 1 x 2 cos2 d 1 cos 2 sin cos arcsin x 38. Let x x4 tan , dx x3 sec2 d , x2 1 4 4x3 x4 2x2 2x2 1 1 1 x1 1 d C x C θ 1− x sec2 . 4x 1 1 1 2 1 2 1 dx 1 x2 sec2 sec4 cos 2 sin cos x x2 1 d C C d 1 2 x1 dx 2x2 1 dx x2 + 1 x 1 ln x 4 4 1 ln x2 2 1 ln x2 2 1 ln x2 2 θ 1 arctan x Section 7.4 1 1 x2 1 2 1 1 2 1 4 x2 x2 2 Trigonometric Substitution 331 40. u arcsin x, ⇒ du x arcsin x dx dx, dv x dx ⇒ v x2 arcsin x 2 cos d , x2 arcsin x 2 x2 arcsin x 2 x2 arcsin x 2 x2 dx 1 x2 cos x2 arcsin x 2 C x2 1 4 1 1 4 cos 2 d sin cos 1 arcsin x C x1 x2 C sin2 cos d cos 1 sin 2 2 x1 x sin , dx x arcsin x dx x2 arcsin x 2 C 1 arcsin x 4 1 1 2 1 2x2 4 x2 cos . 42. Let x 1 sin , dx cos d , 1 1 x2 x x dx 1 2 2x x2 dx 2x x2 1 sin 2 cos d cos 2 sin 2 sin 2 cos 2 cos 1 1 sin2 d d C cos x2 x2 x C 1 x 2 3 1 C 2x x2 C x−1 θ 1 − (x − 1)2 1 3 2 3 2 3 2 1 cos 2 2 1 sin 2 4 1 sin 2 3 arcsin x 2 3 arcsin x 2 44. Let x 3 2 sec , dx x 6x dx 2 2x 1 2 2x 2 sec tan d , x 3 x dx 3 2 4 2 tan . 3 2 sec tan d x 2 5 x 2 4 2 sec 2 tan 2 sec2 2 tan 2 x 3 sec 3 ln sec 3 2 3 d tan 3 ln x 2 3 x2 6x C1 3 x 3 2 2 4 4 C1 x2 6x 5 3 ln x 5 C 332 Chapter 7 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 46. Same substitution as in Exercise 45 (a) 1 1 t2 52 dt cos d cos5 13 tan 3 tan sec4 d C t3 31 t 232 tan2 1 3 t 1 t 1 32 14 t 2 0 3 1 sec2 d t 1 32 t 2 t2 C 32 Thus, 0 1 1 t2 52 dt 3 38 31 432 (b) When t 32 0 3 3 23 3.464. 0, 1 1 t2 0. When t 52 3 2, 13 tan 3 tan 0 3. Thus, 3 dt 1 3 3 3 3 23 3.464. 48. (a) Let 5x 9 3 sin , dx 25x2 dx 3 cos d , 5 3 cos 91 5 9 10 9 10 9 25x2 3 cos . 3 cos d 5 cos 2 d 2 1 sin 2 2 sin cos 5x 3 C C 9 3 5x 9 9 25x2 C 25x2 35 5x 9 arcsin 10 3 35 Thus, 0 9 25x2 dx 9 5x arcsin 10 3 3 , 5 9 10 . 0 9 10 2 9 . 20 (b) When x 35 0, 9 0. When x 25x2 dx 2 2 Thus, 0 sin cos 0 9 10 2 9 . 20 50. (a) Let x x2 x2 3 sec , dx 9 dx 3 sec tan d , 3 tan 9sec2 tan2 sec sin2 cos 1 d d d cos tan x2 3 9 d sin x2 9 3 tan . 3 sec tan d cos2 cos sec ln sec ln —CONTINUED— x 3 C x2 x 9 C Section 7.4 50. —CONTINUED— 6 Trigonometric Substitution 333 Hence, 3 x2 9 dx x2 3, ln x 3 6, x2 3 . 9 x2 x 9 6 ln 2 3 3 3 . 2 (b) When x 6 0; when x 3 Hence, 3 x2 9 dx x2 1 x 4 3 ln sec tan sin 0 ln 2 3 3 . 2 52. x2 2x 11 32 dx 1 x2 2x 26 x2 2x 11 75 ln 2 x2 2x 11 x 1 C 54. x2 x2 4 dx 13 2 xx 4 x2 4 1 x x2 2 2x dx sec 4 2 ln x x2 4 C 56. (a) Substitution: u 1, du (b) Trigonometric substitution: x 58. (a) x2 y k 2 25 5 50 5 y (b) Area square 25 1 4 1 circle 4 5 2 Radius of circle k2 k 52 52 52 (0, k) 5 25 1 r2 1 4 4 (c) Area 5 x r2 12 r 4 60. (a) Place the center of the circle at 0, 1 ; x2 d y 1 2 1. The depth d satisfies 0 ≤ d ≤ 2. The volume is V 3 6 2 0 1 y 1 1 2 dy d 1 arcsin y 2 1 y d 1 1 3d 1 1 1 1 d y 1 2d 2 1 2 0 (Theorem 7.2 (1)) 1 3 arcsin d 3 2 (b) 10 arcsin d 2. 3 arcsin d d (d) V dV dt 6 0 1 dd dt y 61 1 1 2 dy d 1 2 dV dd dt 1 4 0 0 2 ⇒d t 9.4248 cubic meters. The (e) 9 4 0 0 0.3 (c) The full tank holds 3 horizontal lines y 3 ,y 4 3 ,y 2 24 1 d 1 2 intersect the curve at d 0.596, 1. 0, 1.404. The dipstick would have these markings on it. 2 The minimum occurs at d part of the tank. 1, which is the widest 334 Chapter 7 h Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals r cos d , r2 x h 2 62. Let x r sin , dx r cos . y Shell Method: h r V 4 h r 2 x r2 h 2 x r sin h 2 dx h−r h h+r x 2 4 4 r2 h 2 r cos cos 2 2 r cos d r d 2 4 r2 2 h r sin cos2 d 2 1 2 sin cos2 d 2 r 2 x−h 2 r 2h 1 sin 2 2 4 2 r3 cos3 3 2 2 2 r 2h θ r 2 − (x − h)2 64. y s 12 x ,y 2 4 x, 1 x2 dx ln 4 y 2 1 x2 4 1 0 1 x x2 2 17 1 ln x x2 1 0 (Theorem 7.2) 1 4 17 2 9.2936 66. (a) Along line: d1 Along parabola: y a a2 a4 a1 2x a2 y x2, y (a, a 2) d2 0 1 4x2 dx a 1 2x 4x2 4 1 2a 4a2 4 (b) For a For a 1, d1 10, d1 y = x2 1 1 ln 2x ln 2a 5 2 4x2 4a2 1 0 (Theorem 7.2) (0, 0) x 1 5 1.4789. 2 and d2 10 101 d2 1 ln 2 4 100.4988 101.0473. (c) As a increases, d2 68. (a) 25 d1 → 0. (b) y 0 for x 72 − 10 −5 80 (c) y x 72 x2 ,y 72 1 0 1 x ,1 36 x 36 1 2 y 2 1 72 1 x 36 1 1 2 s 36 2 18 1 x 36 2 ln dx 36 0 x 36 2 1 dx 36 1 1 x 36 18 ln 2 72 0 1 1 x 36 2 ln 1 x 36 2 1 2 2 ln 1 36 2 2 2 1 1 82.641 Section 7.4 70. First find where the curves intersect. y2 16 16 2 16 2 16x 2 x4 xx A 0 Trigonometric Substitution y 6 335 x 4 2 14 x 16 4 2 (4, 4) 4 2 16 x 128x 16x2 4x 1 4 x4 x4 0 0, 4 4 x −2 −2 −4 −6 2 4 6 10 162 128x y= 16 − (x − 4) 2 4 x2 4 32 ⇒ x 4 2 12 x dx 4 x 13 x 12 x 16 4 0 16 3 2 4 4 My 0 12 x dx 4 4 0 8 8 x x 8 4 4 2 dx 8 4 x4 16 16 16 4 x 4 4 x 16 4 dx 4 4 16 x 4 112 3 4 x x 4 2 dx 8 1 16 3 13 16 3 112 x 24 x5 5 4 2 2 232 4 2 16 arcsin 16 x 64 3 4 2 4 16 x 4 2 4 2 16 8 2 1 16 2 x 6 4 16 dx 16 Mx 0 dx 4 1 32 32 5 x y x, y 72. Let r 1 R My A Mx A 38 4 8x 0 64 112 3 16 3 64 6 16 4 32 112 16 54 416 15 48 12 28 4 1.55 12 3 4.89 416 15 16 3 4 4.89, 1.55 L tan , dr R 0 104 3 L sec2 d , r 2 dr 2mL R 2m RL b b a L2 L2 sec2 . r 2 + L2 r 2mL r 2 L2 32 L sec2 d L3 sec3 θ L cos d a b a 2m sin RL 2m RL r r2 R L2 0 2m L R 2 L2 336 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 0.8 74. (a) Finside 48 1 0.8 0.8 y2 1 1 y2 dy y 2 dy 0.8 96 0.8 1 y1 1 y 2 dy 0.8 96 (b) Foutside 64 0.8 arcsin y 2 0.4 y1 1 y 2 dy y2 y 2 dy 0.4 1 1 3 y2 32 1 96 1.263 121.3 lbs 0.4 1 0.4 y2 1 1 128 0.4 128 y1 1 y 2 dy 0.4 0.4 arcsin y 2 15.8t2 y1 y2 1 1 3 y2 32 1 92.98 76. S (a) 60 1520.4 111.2t 78. False x2 x 1 dx tan sec tan2 sec tan d d 0 0 7 (b) S t S5 1 1520.4 2 2.71 1 2 111.2t 15.8t2 12 111.2 31.6t 12 (c) Average value S t dt 10 68.24 80. True 1 1 2 2 x2 1 1 x2 dx 2 0 x2 1 x2 dx 2 0 sin2 cos cos d 2 0 sin2 cos2 d Section 7.5 2. 4x 2 3 x 53 2x x x2 1 4x 2 9 1 When x When x 4x2 2x A 2x 3 2, Partial Fractions A B 5 A x Bx x2 1 3 2x 3 x 5 C 1 2 C x Dx x2 A 3 2x 3 3 2x 5 E 12 B 3 3 x 4. x x2 4x 2 3 x x2 1x A 3 x 1 x B 3 6. 1 1 2 8. 10. x x2 4x 1 3 dx x 1 x x1 1x 3 dx 3 dx 3 C B 2x 1 6. ln x 1 6A, A 3 6B, B 2, 1 9 dx 1 6 1 6. 1 1 2x 3 dx 1 2x ln 2x C 3 3 dx C 1 ln 2x 12 1 2x ln 12 2x 3 3 3 Section 7.5 5x2 xx 5x2 12 x 2x 12x 0, x3 x3 x2 x x 2x When x x3 x2 3 2 1 2, x x 12 2 12 12 A x Ax 2 Partial Fractions 337 12. B x 4 2 x C 2 2 Cx x 2, 2 16 4 x A x 2 x 2 8B ⇒ B dx 3 ln x 2. When x 2 ln x 2 2, 32 4 ln x 8C ⇒ C 2 C 4. Bx x When x 5x2 4A ⇒ A 3 dx x 3. When x x 2 dx 2 12 x 12 dx 4x 14. x Ax 3 1 1 x 2x 1 2x 1 Bx 2 x 1 B 1 3A, A x x2 2 x 1. When x 1 1 x ln x 2 2 1, 3 1 x 1 3B, B dx 1 C 1. 3 dx 2 ln x x2 2 2x x x ln x 2 x 2 C 16. x xx x 2 4 2 A x Ax 4, 6 0, 2 2 dx 4x 4 Bx B x 4 3 2. 1 2. 18. 3 12 3 A x Ax 1, B 3 dx 12 1 1 x B 1 B 1. When x 2 x 2 ln x 1 1 x 1 x 1 0, A 1 1 2 2 2x When x When x x x2 4A, A 4B, B When x 2x x 2. dx C 32 x4 3 ln x 2 4 12 dx x 1 ln x 2 C 20. x3 4x2 x2 x 4x2 1 4x2 x2 x Ax 1 1 2 x Bx 1 1x x2 1 4x2 1x Cx 1, 4 1 dx A 1 1 4A ⇒ A 2 x 2 x 1 1 2 B 1 x 1 x C 1 2 x When x x3 1, 4 4x2 x2 x 2C ⇒ C 1 dx 1 x ln x 1 2. When x dx 3 x 3 ln x 1. When x 0, 0 1 B 2⇒B 3. dx 1 1 C 22. 6x x3 8 6x When x 6x x3 8 x A x2 6x 2 x2 2x 2x 4 A 4 Bx x 2 x2 2 Cx 1. When x x2 1 ln x2 2 1 ln x2 2 Bx 2x C 4 2, 12 dx 12A ⇒ A 1 x ln x ln x 2 dx 0, 0 4 x 2C ⇒ C 1 2 dx x2 2. When x x1 dx 2x 4 C 1 C 1, 6 7 x2 B 3 2x 2 1 1 ⇒B 3 dx 1. x2 dx 2x 4 2x 2x 4 4 2 2 3 x1 arctan 3 3 3 arctan 3x 3 338 Chapter 7 x2 x 9 x2 9 2 x2 x 9 Ax x2 Ax Ax3 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals B 9 Cx x2 9 9A D 92 Cx Cx D 9B D 0, B 1, D 0, and C 1. 24. B x2 Bx2 By equating coefficients of like terms, we have A x2 x 9 x2 9 2 1 x2 9 dx x x2 1 2 x2 Bx 1 x2 x2 2x 3 0, 7 1 x 1 2x 9 C 3 Bx 3A 9 2 dx C x 1 arctan 3 3 x 2 4x 7 1 x 2 2x x When x A 2, B x2 x3 x2 2 26. A 3 7 x A x 4x 1, 12 1, C 4x x Cx 1 1, 4 2A 2B 2C. Solving these equations we have 6A. When x 1. 7 3 dx 2 C. When x x x2 2x 2x 1 3 3 dx dx C 2 ln x 1 1 ln x 2 2 28. x2 x 3 x2 3 2 x2 x 3 Ax x2 Ax Ax 3 B 3 Cx x2 3 3A D 32 Cx Cx D 3B D 0, B 1, 3A C 1, 3B D 3. Solving these equations we have B x2 Bx 2 By equating coefficients of like terms, we have A A 0, B 1, C 1, D 0. x2 x x4 6x 2 3 dx 9 1 x2 3 x2 x 1 arctan 3 3 x 3 2 dx C 1 2 x2 3 30. x1 x2 x 1 x 1 A x Ax x B x2 1 C x 1 Bx 1 Cx 2 1, C 5 1 When x 0, B 1. When x B 1, C 2. 5 1 2. When x 5 1, 0 2A 2B C. Solving these equations we have A 2, x x2 1 dx x1 5 2 1 1 dx x 1 x x x 1 4 5 1 dx x2 2 ln x 1 x 5 1 2 1 1 x 5 1 dx 2 ln x 2 ln 2 ln 5 3 1 1 S ection 7.5 1 Partial Fractions 339 32. 0 x2 x2 x x 1 1 1 dx 0 dx 0 2x x2 1 x x 1 1 2 x 1 dx x ln x 2 x 1 0 1 ln 3 34. 6x 2 x2 x 1 dx 13 1 2 1 2 3 ln 2 1 x x 7 2 1 7 1 2 2x 3 ln 1 1 2 2 C − 4.7 4 2, 1 : 3 ln C 1⇒ C (2, 1) 4.7 −4 36. x3 x2 3, 4 : 4 2 dx 2 5 1 ln x 2 2 C 4 4⇒C 2 x2 22 5 4 C 1 ln 5 2 8 1 ln 5 2 (3, 4) −8 −2 8 38. x3 x 2x 6x 2 1 9 12x 5 8 C dx 2 ln x 2 4 1 x 2 x 5 2 2 10 C (3, 2) − 10 −3 10 3, 2 : 0 2⇒C 40. x2 x3 2, 6 : x2 x x 2 1 dx 0 C arctan x 6⇒C ln x 6 1 C 10 arctan 2 arctan 2 −2 −2 (2, 6) 5 42. Let u uu cos x, du 1 1 1 A u Au sin x dx. B u 1 1 Bu 1, B 1 uu 1 u ln u ln u u 1 1 1 1 du ln u C 1, u cos x. 44. 1 uu 1 1 When u When u A u Au B u 1 1 ,u Bu tan x, du sec2 x dx 0, A 1. 1, 1 B⇒B 1 uu 1 u 1. 1 u ln u u C C du 1 1 du 1 C When u 0, A du sin dx. 1. When u sec2 x dx tan x tan x 1 sin x dx cos x cos2 x du 1 du u C ln u ln ln u 1 cos x 1 ln cos x ln 1 sec x tan x tan x 1 C C 340 Chapter 7 ex, du 1 1u Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals ex dx. A 1 1 u A u2 1 1 Bu u2 C 1 Bu Cu 1 46. Let u u2 When u When u When u e 2x 1, A 0, 1 1, 1 e 1 ex x 1 2. A 2A 1 C. 2B dx 1 2 2C. Solving these equations we have A u2 1 u 1 1 1 1 1u du 1 du u u2 1 ln u2 2 ln e 2x 1 du 1 1 1 arctan u 2 arctan e x C C 1 2, B 1 2, C 1 2, u e x, du e x dx. 1 ln u 2 1 2 ln e x 4 1 a2 x2 1 When x When x 1 a2 x2 a Aa A x x a B x Ba x 48. 50. 1 x2 a bx 1 When x When x When x A x Ax a B x2 bx C a bx Ba bx Cx 2 a, A 1 2a. a, B 1 2a. dx 1 2a 1 2a 1 a ln a x x x x C a 1 x ln a dx 0, 1 Ba ⇒ B 1 a. a b, 1 C a2 b2 ⇒ C b2 a2. 1, 1 a bA a bB C ⇒ A b a 2. b a2 x b ln x a2 1 ax 1 ax 1a x2 1 ax b2 a2 dx a bx b ln a a2 C C bx C 1 x C xa 2 bx dx 1 a ln 2a a a bx b ln a2 x x b ln a2 a bx A2 52. dy dx x2 8 4 2x 3 ,y 0 5 54. (a) (b) Nx Dx Nx Dx A1 px q px q 2 ... px Am q m A1 B1x ax2 bx c ... An Bn x ax2 bx c n −1 −2 3 3 y 56. A 2 0 3 1 dx 0 7 16 3 x2 1 16 x x dx dx x2 3 0 5 2 2 3 2 2 14 0 2x 6 14 4 ln 8 4 7 ln 7 4 x (From Exercise 46) −3 −2 −1 1 2 3 2.595 S ection 7.5 58. (a) 6 5 4 3 2 1 t 1 2 3 4 5 6 5 y Partial Fractions 341 (e) k 1, L 3 5: y 1 :y 2 5 15 2e 3t i y0 ii y 0 12 32 5 2e 3t 1 3 5e 3t (b) The slope is negative because the function is decreasing. (c) For y > 0, lim y t t→ 3. B L y y By ⇒ A 1 ,B L 1 L (f ) 0 0 5 (d) dy yL y 1 dy yL y 1 L 1 dy y 1 ln y L A y AL dy dt d 2y dt 2 ⇒y ⇒ ky L ky dy dt y y dy dt L L 2 y dy dt L y dy dt 0 k dt 1 L ln L ln y L y y dy y kt k Lt y L y y L y y0L y0 3 k dt C1 LC1 From the first derivative test, this is a maximum. C2ekLt When t 0, y0 L y0 C2 ⇒ y0 L y0 e y0 ekLt. Solving for y, you obtain y L x2 kLt . 3 60. (a) V 0 2x x2 1 2 dx 4 0 3 x2 1 x2 1 1 2 dx 1 x2 1 2 4 0 dx x x2 2 1 3 (partial fractions) (trigonometric substitution) 0 4 2 —CONTINUED— arctan x arctan x 1 arctan x 2 x x2 1 3 arctan 3 0 3 10 5.963 342 Chapter 7 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 60. —CONTINUED— 3 (b) A 0 2x x2 3 0 3 1 2x2 dx dx ln x2 1 ln 10 3 0 1 0 3 ln 10 2 y x 1 A x2 1 2 0 2 x2 1 dx 1.521 (1.521, 0.412) 1 1 2x ln 10 y 11 A2 2 ln 10 3 0 3 0 2 arctan x 2x x2 1 x2 1 x2 1 2 2 3 ln 10 2 ln 10 1 1 2 3 0 arctan 3 x2 x2 1 2 x 1 −1 2 3 dx dx (partial fractions) dx x x 3 2 3 2 arctan x ln 10 21 arctan x ln 10 2 x, y 1.521, 0.412 1 arctan x 2 x 2 x2 1 1 (trigonometric substitution) 0 0 1 arctan x ln 10 x x2 1 3 0 1 arctan 3 ln 10 3 10 0.412 62. (a) 1 z0 y0 y0 z0 1 y0 x 1 y0 1 x z0 1 z0 ln z0 y0 x A x dx x x C y0 kt x C z0 B x ,A 1 z0 y0 ,B 1 z0 y0 (Assume y0 z0) kt 1 z0 kt z0 e z0 C, when t ln z0 y0 0, x 0 y0 1 z0 y0 ln z0 y0 x x ln ln y0 z0 z0 y0 y0 z0 z0 y0 z0 y0 x x x x x y0 k t y0 kt y0z0 e z0 y0 kt 1 z0e z0 y0 kt y0 (c) If y0 z0, then the original equation is 1 y0 y0 x 0 when t 1 y0 y0 x x x As t → kt x 2 (b) (1) If y0 < z0, lim x t→ y0. z0. (2) If y0 > z0, lim x t→ dx 1 k dt kt 1 y0 C1 C1 1 x 0⇒ 1 y0 k t y0 y0 y0 kt y0 1 y0 y0 kt y0 1 x0. , x → y0 Section 7.6 Integration by Tables and Other Integration Techniques 343 Section 7.6 Integration by Tables and Other Integration Techniques 2, a 5 5 5 4x 2x 4 x ln 5 2x 5 5 5 C C 2. By Formula 13: b 2 1 dx 3 x2 2x 5 2 21 3 25 x x 8 ln 375 2x 5 2 4x 75 x 2x 4. By Formula 29: a 1 3 x2 x 9 dx 3 1 3 x2 9 arcsec x 3 C 6. By Formula 41: x 9 x4 dx 1 2 2x 32 x2 2 dx 1 x2 arcsin 2 3 1 dx 2x x 2 cos 3 x 1 dx 2x 2 sin x cos 2 3 x 2 C C 8. By Formulas 51 and 47: cos3 x x dx 2 2 cos3 cos2 x x sin 3 u 10. By Formula 71: 1 1 dx tan 5x 1 5 1 x, du 1 dx 2x 1 5 dx tan 5x ln cos u ln cos 5x sin u sin 5x C C 11 u 52 1 5x 10 u 5x, du 5 dx 1 ,b 2 ex 14 4 e 17 2 12. By Formula 85: e x2 a 2 1 sin 2x 2 1 sin 2x 2 2 cos 2x 2 cos 2x C C sin 2x dx 4 x2 14. By Formulas 90 and 91: ln x 3 dx x ln x x ln x 3 3 ln x 2 dx 2 ln x 2 3 3 3x 2 3 ln x ln x 6 x5 25 2 C C 15 x ln x 5 x ln x x5 52 6 ln x 16. (a) By Formula 89: x 4 ln x dx 1 4 1 ln x x 4 dx, v x5 25 C x5 5 C C (b) Integration by parts: u x 4 ln x dx x5 ln x 5 ln x, du 1 dx, dv x x5 ln x 5 x5 1 dx 5x 344 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 75, x 1 x ln 2 75 x 3x ln 30 x 75 75 u, and 75 75 C x x C (b) Partial fractions: 1 x2 75 1 75: 1 75: 1 1 x2 75 dx x Ax A 75 75 x Bx 1 2 75 B 75 75 1 10 3 3 30 x 75 75 3 30 dx 75 C 3 30 18. (a) By Formula 24: a 1 x2 75 dx 2A 75 ⇒ A 2B 75 ⇒ B 3 30 75 x 3x ln 30 x x 1 2 2 3 20. By Formula 21: x dx x 1 x C 22. By Formula 79: u arcsec 2x dx 2x, du 1 2x arcsec 2x 2 2 dx ln 2x 4x 2 1 C 24. By Formula 52: x sin x dx x2 3x 5 2 sin x x cos x C 26. By Formula 7: dx 1 3x 27 25 3x 5 10 ln 3x 5 C 28. By Formula 14: x2 1 2x 2 dx 2 2x 2 arctan 2 4 C arctan x 1 C 30. By Formula 56: 2 32. By Formula 71: d 1 31 1 tan 3 1 t1 u ln t 2 1 sin 3 1 sin 3 3 3 2 d C u 1 ex dx tan e x e x, du e x dx 1x e 2 ln cos e x sin e x C sec 3 34. By Formula 23: dt 1 dt t 1 1 ln t 2 1 dt t arctan ln t C ln t, du 36. By Formula 26: 3 x 2 dx 1 x x2 2 1 27 3 3 ln x x2 3 C 38. By Formula 27: x2 2 3x 2 dx 3x 2 2 2 3x 3 dx 2 9x 2 4 ln 3x 2 9x 2 C 2 1 3x 18x 2 8 27 2 S ection 7.6 2 3 Integration by Tables and Other Integration Techniques 3 2 2 345 40. By Formula 77: x arctan x3 2 dx arctan x3 2 x dx ln 1 x3 C 2 32 x arctan x3 3 ex e 2x e x, du ex 1 e 2x 42. By Formula 45: u 44. By Formula 27: 2x 3 2 1 32 dx C e x dx 2x 3 2 4 dx 1 2 2x 3 2 2x 3 2 3)2 2 4 2 dx 2x 3 2 1 2x 8 u 2x 3, du 2 dx 3 2x 4 ln 2x 3 2x 3 2 4 C 46. By Formula 31: u 3 3 x dx x 3 cos x sin2 x sin x, du 3 9 1 9 x 1 dx ln sin x sin2 x 1 C cos x dx 48. x dx x2 dx 2 9 x2 x 9 C x dx 2 50. By Formula 67: tan3 d tan2 2 tan2 2 tan d ln cos x C x 3 arcsin 3 52. Integration by parts: w un a bu du 2u n b 2u n b 2u n b 2u n b Therefore, 2n 1 a a a a u n, dw bu bu bu bu un a 2 bu du nun 1 du, dv 1 du ,v a bu bu du bu a a 2 b a bu 2n n u b 2n n u b a a 1 bu du bu 2n au n 1 b a 2na b un a 1 bu n du bu bu du 2n na un a un a 1 bu bu du 2n ua b bu du and un a bu 2n 1b un a bu na un a 1 bu du . 54. w un cos u du un, dv un sin u cos u du, dw n un nun 1 sin u du du, v sin u 1 346 Chapter 7 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 56. ln u n du u ln u n n ln u n 1 1 u du u 1 du, v u u ln u n n ln u n 1 du w ln u n, dv du, dw n ln u n 1 u 58. x x2 0, 0 : 2x dx 1 3 ln 1 6 1 2 x2 6 C 2x 32 3x 0 1 x2 2x 15 3 ln x 1 x2 2x C 0⇒C −6 (0, 0) 6 − 15 3 60. 0, 2 2x x1 2: 2 x2 dx 3 ln 2 3 2x 2 x2 C 3 ln 3 x 2 1 2x x2 C 2 (0, 2 ) − 2.5 1 2⇒C 3 ln 3 −6 62. cos sin 1 sin d 1 sin 2 1 sin 1 sin 2 1 sin ln 1 sin cos 10 C 0, 1 : C 1⇒y ln 1 sin cos 1 −8 (0, 1) −2 8 64. sin 1 cos2 d 1 sin cos 2 2 d C 66. 0 3 1 2 cos 1 d 0 3 1 arctan cos 2u 1 u2 2 1 u2 1 u2 1 du 1 2 0 5u2 1 2 arctan 5 2 arctan 5 u tan 2 1 sec tan 1 1 cos cos sin sin d 5 5u 0 68. 1 cos cos d 1 cos 1 cos cos 1 cos cos2 sin2 d d 70. d sin cos d cos 1 cot2 csc2 C d u 1 sin , du 1d ln 1 csc cot csc cot csc cot C cos d S ection 7.6 2 Integration by Tables and Other Integration Techniques 347 72. A 0 x 1 2 y e x2 dx 1 2 1 2 0 2x dx 2 1 ex 2 1 4 12 x 2 1 4 2 ln 1 ex 2 x 1 2 0 ln 1 e4 1 ln 2 2 0.337 square units 1 du, u u 74. Log Rule: ex 1 76. Integration by parts 78. Formula 16 with u e2x 5 80. A reduction formula reduces an integral to the sum of a function and a simpler integral. For example, see Formula 50, 54. 82. W 0 500x dx 26 x 2 5 250 0 26 x2 5 12 2x dx 500 26 500 26 1 lbs x2 0 2049.51 ft 1 2 0 2 0 84. 1 5000 e4.8 1.9t dt 2500 1.9 2 0 1 1.9 dt e4.8 1.9t 2 2500 4.8 1.9 2500 1 1.9 2500 3.8 1.9 1.9t ln 1 e4.8 1.9t 0 ln 1 e 4.8 ln 1 e4.8 ln 1e 1 e4.8 401.4 k 20 86. (a) 0 6x 2e x 2 dx 50 5.51897. 0 5.52 −1 By trial and error, k 5.51897 (b) 0 6x 2e x2 dx 88. True 348 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.7 2. lim 1 x 0.1 0.9516 ex 1 Indeterminate Forms and L’Hôpital’s Rule 1 x →0 −1 1 x fx 0.01 0.9950 0.001 0.9995 0.001 1.00005 0.01 1.005 0.1 1.0517 −2 4. lim x→ 6x 3x2 2x 1 6 10 3.4641 exact: 6 3 103 104 3.4642 105 3.4641 0 5 x fx 102 3.4757 3.5857 3.4653 100 0 6. (a) lim 2x2 x 2x2 x x 1 x 1 3 3 x→ 1 x→ 1 lim 2x x 3x 1 1 x→ 1 lim 2x lim 3 4x 1 1 5 5 (b) lim x→ 1 x→ 1 lim d dx 2x2 x 3 d dx x 1 x→ 1 8. (a) lim x →0 sin 4x 2x 2x 4x2 2x 4x2 x x 1 1 x 1 x 2 x →0 lim 2 sin 4x 4x 2x 4 21 2 (b) lim x →0 sin 4x 2x x →0 lim d dx sin 4x d dx 2x x →0 lim 4 cos 4x 2 2 10. (a) lim x→ x→ lim lim 1 x2 1x 1 x 0 4 x→ 0 lim 2 8x 1 0 (b) lim x→ x→ d dx 2x d dx 4x2 2x 1 1 12. lim x2 x→ 1 x→ 1 lim 3 14. lim x →2 4 x x2 2 x →2 lim x x 4 4 1 x2 x2 x →2 lim 16. lim x →0 ex 1 x3 x x →0 lim ex 1 3x2 ex 6x 2 18. lim ln x x → 1 x2 1 x→1 lim 2 ln x x2 1 2x 2x 1 x2 4 1 x →0 lim x→1 lim x→1 lim 20. lim sin ax x → 0 sin bx x x2 x2 ex 2x a cos ax x → 0 b cos bx lim 1 3 2x ex a b 1 2x 2 ex 2 22. lim arctan x x →1 x x3 x 1 1 3x2 1 x →1 lim 11 1 x2 1 2 24. lim x→ x→ lim 0 26. lim x→ x→ lim 28. lim x→ x→ lim x→ lim 0 Section 7.7 x2 x2 1 x 1 1x 2 Indeterminate Forms and L’ H ô pital ’s Rule sin x x 349 30. lim x→ x→ lim 32. lim x→ 0 . Note: Use the Squeeze Theorem for x > 1 x ln x 4 x3 4 ln x x3 4 3x3 0 4x 3x2 ex 2 x ≤ sin x 1 ≤ x x 1 2 ex 1 2 34. lim x→ x→ lim x→ lim 36. lim x→ x→ lim x→ lim 38. (a) lim x3 cot x x→0 0 x→0 40. (a) lim x tan x→ 1 x x→ 0 lim lim tan 1 x 1x 1 x2 sec2 1 x 1 x2 1 x 1 (b) lim x3 cot x x→0 1 lim x3 tan x x→0 lim 3x2 sec2 x 0 (b) lim x tan x→ 1 x (c) 0 x→ 3 x→ −1 lim sec2 (c) 2 1 10 −1 42. (a) lim e x x→0 x x→0 2x 1 x ex x 1 1 2 x. 44. (a) lim 1 x→ 1 x x→ x 1 1x . x 1 x x→ (b) Let y ln y lim lim ex 2 ln 2 ex x ex e4 x (b) Let y ln y 4 lim 1 lim x→0 x→ x ln 1 1 x2 1x 1 x2 lim ln 1 x→0 lim 1x 1x Thus, ln y (c) 60 4⇒y 54.598. x→ lim 1 x→ lim 1 1 1x 1 Thus, ln y x→ 0 0 2 1⇒y 1 x x e1 e. e. Therefore, lim 1 (c) 5 0 −1 10 350 Chapter 7 x x→ 1x Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 0 46. (a) lim 1 x→ 48. (a) lim 3 x x→4 4 x 4 00 4 x 4. (b) Let y ln y lim 1 lim ln 1 x x 1 x. (b) Let y ln y x→4 lim 3 x lim x x x→4 4 ln 3 x 4 4 4 4 4 4 x 4 2 4 x→ x→ lim 11 x 1 x→4 lim lim ln 3 x 1x 1x 1x x 0 1. 1. x→4 Thus, ln y 0 ⇒ y e0 Therefore, lim 1 x 1 x x→ x→4 x→4 lim 0 1. (c) 5 Hence, lim 3 x (c) 2 0 −1 10 4 0 7 x 50. (a) lim x→0 cos 2 lim x cos 00 x 52. (a) lim x →2 1 x2 1 x2 4 4 x x2 x x2 1 4 1 4 x →2 (b) Let y ln y 0 x→0 2 2 x x . (b) lim x →2 lim lim 1 x2 x 4 12x 2x 1 1 1 8 x→0 lim x ln cos 0 x →2 0 x→0 x x →2 lim 1 4x x 1 Hence, lim (c) 2 cos 2 x 1. (c) 0.25 2 4 − 0.25 0 0 3 54. (a) lim x→0 10 x 10 x 3 x2 3 x2 x→0 (c) lim 10x 3 x2 0 10 5 (b) lim x→0 −20 56. (a) 2 (b) Let y x →0 sin x x, then ln y lim ln sin x 1x x →0 x ln sin x . cos x sin x 1 x2 x →0 x →0 lim lim − x2 tan x x x →0 lim 2x sec2 x 0 2 Therefore, since ln y −1 0, y 1 and lim sin x 1. Section 7.7 Indeterminate Forms and L’ H ô pital ’s Rule x3 e2x 3x2 2e2x 6x 4e2x 6 8e2x 351 58. (a) −1 1 5 (b) lim x→ x→ lim x→ lim x→ lim 0 −3 60. See Theorem 7.4. x3 e2x ln x x3 2 x→ 62. Let f x 6x 4e2x 6 8e2x x 25 and g x x. 64. lim x→ x→ lim 3x2 2e2x x→ lim x→ lim 0 66. lim x→ lim lim lim 2 ln x x 3x2 2 ln x 3x3 2x 9x2 x→ 68. lim x→ xm enx x→ lim lim mxm 1 nenx mm 1 xm n2enx m! nmenx 2 x→ x→ x→ lim 2 9x3 0 ... x→ lim 0 70. x ex x5 1 2.718 5 0.047 10 0.220 20 151.614 30 4.40 105 40 2.30 109 1.66 50 1013 100 2.69 1033 72. y x→ x x, x > 0 and lim x x x→0 74. y 1 lim x x ln x x Horizontal asymptote: y dy dx x1 x x2 x e ln x 1 0 (See Exercise 29) 1 ln x x2 0 No horizontal asymptotes ln y 1 dy y dx dy dx x ln x x 1 x ln x ln x x e 1 1 Critical number: Intervals: Sign of dy dx: 0 y 0, e e, Decreasing xx 1 f x : Increasing e, 1 e Critical number: Intervals: Sign of dy dx: y Relative maximum: e 1, 0 Increasing 1e 1 0, e 1 −1 4 f x : Decreasing (e, 1( e 1e −4 Relative minimum: e 1, e 4 11 , ee −1 −1 ( 1, 1 e ee (( 1 ( 4 76. lim x→ sin x x 1 0 (Numerator is bounded) 78. lim x→ e 1 x 0 x e 1 0 0 . Limit is not of the form 0 0 or L’Hôpital’s Rule does not apply. . Limit is not of the form 0 0 or L’Hôpital’s Rule does not apply. 352 Chapter 7 r n nt Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 80. A P1 ln A ln P nt ln 1 r n ln 1 ln P 1 nt 1 rn 1 n2t r n ln 1 n→ lim r n 1 nt n→ n→ lim r n2 1 n→ lim rt 1 1 r n rt Since lim ln A n→ ln P rt, we have lim A n→ e ln P r n rt eln Pert Pert. Pert. Alternatively, lim A n→ lim P 1 r n nt n→ n r rt lim P 1 82. Let N be a fixed value for n. Then x→ lim xN ex 1 x→ lim N 1 xN ex 2 x→ lim N 1N ex 2 xN 3 ... x→ lim N ex 1! 0. (See Exercise 68) 84. f x k k k lim 1, xk k 1 fx fx fx 1 x x 0.1 0.1 x 0.01 1 0.01 k →0 6 k=1 1 1 10 x 0.1 100 x 0.01 ln x 1 1 −2 −2 k = 0.1 k = 0.01 10 0.1, 0.01, xk k k →0 lim xk ln x 1 86. f x 1 ,g x x f2 g2 f1 g1 12 3 1 6 2c3 c x2 4, 1, 2 fc gc 1 c2 2c 1 2c3 6 3 88. f x ln x, g x f4 g4 f1 g1 ln 4 63 3c3 ln 4 c3 x3, 1, 4 fc gc 1c 3c 2 63 21 ln 4 3 1 3c 3 3 c 21 ln 4 2.474 90. False. If y y x2ex ex x2, then 2xex x 4 92. False. Let f x xex x 2 x4 ex x 2 . x3 x→ x and g x 1 x→ x 1. Then x 1 1. lim x x 1, but lim x S ection 7.8 e 0, gx lim x →0 x e 1 x2 1 x2 Improper Integrals 353 94. g x , x x 0 0 1.5 y g0 Let y g0 0 x →0 lim e 1 x2 x 0.5 x , then ln y ln x lim x → 0 1 x2 1 ln e 1 x2 x x →0 1 x2 1x 2 x3 ln x lim x2 2 e 1 x2 ln x x2 0 . Since x −2 −1 − 0.5 1 2 x →0 lim x2 ln x lim x →0 we have lim x2 ln x x2 x →0 . Thus, lim y x →0 0⇒g 0 0. Note: The graph appears to support this conclusion—the tangent line is horizontal at 0, 0 . gx 96. lim f x x →a 98. lim x ln 2 x →0 1 ln x 1 ln x y ln y x →a fx gx Let y x ln 2 ln y , then: ln x ln 2 ln x 1 ln x x →0 g x ln f x lim g x ln f x , and hence y . Thus, lim y x→ 1 ln 2 ln x As x → a, ln y ⇒ x →a . Thus, x →0 lim ln y x →0 lim ln 2 ln x 1 ln x ln 2 lim ln 2 x 1x lim f x gx x→0 lim ln 2 2. eln 2 Section 7.8 Improper Integrals 3. 4 32 2. Infinite discontinuity at x 4 3 x 1 3 dx b →3 lim b x 2x 2 3 3 3 2 dx 4 b →3 lim 12 b b →3 lim 2 b3 Diverges 4. Infinite discontinuity at x 2 0 1. 1 x 1 1 23 dx 0 x 1 1 b 2 23 dx 1 x 1 1 lim 23 2 dx 1 1 2 b→1 lim 0 x 1 1 1 23 b dx c→1 c x 1 23 dx 0 3 3 0 6 b→1 lim 33 x 0 c→1 lim 33 x c Converges 354 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 6. Infinite limit of integration. 0 0 8. 0 e x dx b 0. You need to evaluate the limit. b e2x dx b→ lim b e2x dx 1 2x e 2 0 b b→ lim 0 e x dx b→ lim e e x 0 b b→ lim 1 2 0 1 2 b→ lim 1 1 Converges b b→ 10. 1 5 dx x3 lim 1 5 dx x3 5 x 2 b b 2 1 12. 1 4 4 b x dx b→ lim 1 4x 14 dx Diverges b→ lim 5 2 b→ lim 16 3 4 x 3 b 1 b x2 14. 0 xe x2 dx b→ lim 0 xe dx b→ lim e x2 2x 4 0 b→ lim e b2 2b 4 4 4 b b 16. 0 x 1e x dx b→ lim 0 x 1e x dx b→ lim xe x 0 b→ lim b eb 0 0 by L’Hôpital’s Rule. 18. 0 e ax sin bx dx c→ lim e ax a sin bx b cos bx a2 b2 b a2 b2 b c 0 20. 1 ln x dx x b b→ lim 1 ln x dx x 2b 0 b a2 b b2 x b→ lim ln x 2 Diverges 1 22. 0 x3 x2 1 2 dx b→ lim 0 x2 1 dx 1 b→ lim 0 x x2 1 1 b 2 dx 24. 0 ex 1 ex b dx b→ lim ln 1 ex 0 ln 2 b→ lim 1 ln x2 2 1 2 1 2 x2 Diverges 0 Diverges x dx 2 x 2 b 0 4 26. 0 sin b→ lim 2 cos 28. 0 8 dx x 4 b→0 lim b 8 dx x 4 b→0 lim 8 ln x b x Diverges since cos does not approach a limit as x → 2 6 . Diverges 30. 0 4 dx 6x b b→6 e e b→0 lim 0 46 86 86 x x 12 dx b 32. 0 ln x2 dx lim 0 2 ln x dx e b→6 lim 80 12 0 b→0 lim 2x ln x 2e 2e 2x b b→0 lim 2b ln b 2b 86 2 b b→ 2 0 1 4 x 2 b 0 34. 0 sec d Diverges lim 2 ln sec tan 0 , 36. 0 dx x2 b→2 lim arcsin 2 Section 7.8 2 Improper Integrals 355 38. 0 1 4 x2 b dx b→2 lim 0 11 42 x 1 2 x dx b→2 lim 12 ln 42 x x b 0 0 Diverges 3 40. 1 x 2 2 2 8 3 dx 3 2x 1 b b→2 2 2x 1 83 dx 2 83 2x dx b 2 83 dx 2 2 83 3 lim lim 2 2 c→2 lim c 2x 6 x 5 dx 3 b→2 6 x 5 53 1 c→2 lim 53 c Diverges 1 dx x ln x Thus, 1 dx x ln x b→1 1 42. ln ln x C 44. If p 1, 0 1 dx x 1, a→0 1 a→0 lim ln x a a→0 lim ln a . Diverges. If p 1 dx x ln x 1 e 1 c→ e 1 e 1 dx x ln x . e 1 0 1 dx xp lim 1 1 x1 p 1p p if 1 1 a a→0 lim 1 1 p a1 p . 1p lim ln ln x lim ln ln x This converges to p > 0 or p < 1. Diverges 46. (a) Assume a g x dx L (converges). ,0≤ a Since 0 ≤ f x ≤ g x on a, (b) a f x dx ≤ a g x dx L and a f x dx converges. f x dx. a g x dx diverges, because otherwise, by part (a), if a g x dx converges, then so does 1 48. 0 1 3 x dx 1 1 13 1 3. 3 converges. 2 50. 0 x 4e x dx converges. See Exercise 44, p 1 x 1 x1 1 (See Exercise 45.) 1 dx diverges by Exercise 43, x 1 2 52. Since ≥ 1 on 2, x and 2 x 1 dx diverges. 54. Since x ≤ 1 on 1, x3 2 and 1 1 dx converges by Exercise 43, x3 2 1 1 x1 x dx converges. 56. 1 1 ≥ since x x ln x x ln x < x on 2, . Since 2 1 dx diverges by Exercise 43, x 2 1 dx diverges. x ln x 58. See the definitions, pages 540, 543. 60. Answers will vary. (a) ex 1 e 2x 62. f t (b) x dx Diverges Fs t te 0 st dx (Example 4) dt b→ lim 1 s2 b st 1e st 0 Converges 1 ,s > 0 s2 356 64. f t Fs Chapter 7 eat eat e 0 st Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 66. f t dt 0 sin at e 0 st et a lim s dt b Fs et a s 0 sin at dt e st b 1 a 1 a s s b→ b→ lim s2 a s2 a2 a2 s sin at a s2 a2 a cos at 0 0 1 s a ,s > a 0 ,s > 0 68. f t Fs sinh at e 0 st sinh at dt 0 e et s a st eat 2 1 s e at dt et s a 1 2 b et 0 s a et 1 s s a dt 1 b→ lim 1 2 1 2 1 s 1 dx x2 1 s a a a a 0 0 1 2 a s a 1 s 1 x a s2 a2 ,s > a 70. (a) A 1 1 1 (b) Disk: V 1 1 dx x4 b b→ lim 3x3 1 3 (c) Shell: V 2 1 x 1 dx x2 b b→ lim 2 ln x 1 Diverges 72. x 2x y 1 S 4 1 2 2 2 y2 2yy 1 0 x y y 3 2 2 1 (Assume y > 0. y 3 1 3 x 2 2 y2 x dx y 4 4 1 1 x x x 2 2 2 2 dx 4 1 b x 1 a 2 x 40 2 2 1 2 x 2 2 dx 1 8 2 a→1 b→3 lim 1 2 arcsin x 2 2 arcsin 1 2 arcsin 74. (a) F x W (b) K ,5 x2 K ,K 4000 2 80,000,000 lim 80,000,000 x b 4000 b 80,000,000 dx x2 4000 W 2 10,000 10,000 8000 b→ 20,000 mi-ton 4000 80,000,000 x 80,000,000 b 20,000 80,000,000 b b Therefore, 4000 miles above the earth’s surface. Section 7.8 2 e 5 4 Improper Integrals 357 76. (a) (b) 0 2t 5 dt 0 2t 5 dt 2 e 5 e b 2t 5 dt e b→ lim 85 e 1 2t 5 0 1 2 e 5 4 2t 5 0 0.7981 (c) 0 79.81% te2t 5 t 2 e 5 2t 5 dt b→ lim 5 e 2 b 2t 5 0 5 2 5 78. (a) C 650,000 0 25,000 1 25,000 10 0.08t e 0.06t 0.06t dt t e 0.06 0.06t 650,000 1 e 0.06 0.08 1 e 0.06 2 5 0.06t 0 $778,512.58 (b) C 650,000 0 25,000 1 25,000 0.08t e 0.06t 0.06t dt t e 0.06 0.06t 650,000 (c) C 650,000 1 e 0.06 0.08 0.06t 1 e 0.06 2 10 0.06t 0 $905,718.14 25,000 1 0 0.08t e t e 0.06 dt 0.08 t e 0.06 0.06t 650,000 25,000 lim b→ 0.06t 1 e 0.06 2 b 0.06t 0 $1,622,222.22 80. (a) 1 1 dx x 1 dx x2 b b→ lim lim ln x 1 (b) It would appear to converge. y 1 b→ 1 x b 1 1 1.00 0.75 1 1 dx will converge if n > 1 and will diverge if n ≤ 1. xn sin x dx ⇒ 1 x b→0 0.50 0.25 x −5 − 0.25 15 20 (c) Let dv u v cos x 1 dx x2 b 1 1 ⇒ du lim cos x x 1 sin x dx x cos x dx x2 cos 1 1 cos x dx x2 Converges 82. (a) Yes, the integral is not defined at x (c) As n → (d) In 0 2. 4 . (b) 5 , the integral approaches 4 2 1 4 dx tan x n 0 −2 2 I2 I4 I8 I12 3.14159 3.14159 3.14159 3.14159 358 Chapter 7 1 e 32 f x dx 50 0.4 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 84. (a) f x 90 x 70 2 18 (b) P 72 ≤ x < (c) 0.5 0.2525 0.5 0.2475 0.2525 P 70 ≤ x ≤ 72 1.0 These are the same answers because by symmetry, P 70 ≤ x < and P 70 ≤ x < P 70 ≤ x ≤ 72 P 72 ≤ x < . 0.5 50 90 0.5 − 0.2 86. False. This is equivalent to Exercise 85. 88. True Review Exercises for Chapter 7 2. xe x 2 1 dx 1 x2 1 e 2x dx 2 1 x21 e 2 C 4. x 1 x2 dx 1 2 1 x2 12 12 2x dx C 1 1 x2 2 12 1 u5 5 1 x4 x4 x4 2x2 x 1 2x2 1 2x2 x x2 1 2 1 x2 C x 6. 2x 2x 3 dx u4 2 2x 5 u2 2 3 3u2 du 3 32 u3 C C 8. 1 dx x2 dx x 1 2 x u du 1 2 1 2 x2 2x x2 1 1 C 2 dx u 2x 3, x , dx 10. x2 (1) dv u (2) dv u 1 ex dx ex dx x2 x2 ⇒ v 1 ex ex 2 xex dx x2 1 ex 2xex 2 ex dx ex x2 2x 1 1 1 ⇒ du v ex ⇒ du 2x dx ex dx ⇒ x dx 12. u arctan 2x, du arctan 2x dx 2 1 4x2 dx, dv dx,v 2x dx 4x2 4x2 x 14. ln x2 1 dx 1 2 ln x2 1 dx 1 1 1 x x2 x2 dx 1 dx 1 x2 1x ln 2x 1 1 1 dx C x arctan 2x x arctan 2x 1 1 x ln x2 2 C 1 x ln x2 2 1 x ln x2 2 dv u dx ln x2 ⇒ v x 1 ln 1 4 1 ⇒ du 2x x2 1 dx Review Exercises for Chapter 7 e2x dx 1 e2x 1 ln 1 2 e2x C 359 16. ex arctan ex dx ex arctan ex ex arctan ex dv u ex dx ⇒ v ex ex 1 e2x dx arctan ex ⇒ du 18. sin2 x dx 2 1 1 2 cos x d x 1 x 2 1 sin x C 1 2 x sin x C 20. tan sec4 or tan sec4 d tan3 tan sec2 d 14 tan 4 12 tan 2 C1 d sec3 sec tan d 1 sec4 4 C2 22. cos 2 sin cos 2 d cos 2 sin sin2 cos 3 sin cos cos sin 2 d 1 sin 4 cos 4 d C 24. x2 x 9 dx 3 tan 3 sec 3 tan2 3 sec2 3 sec tan d 1d C 9 3 arcsec x2 x 3 d x x2 − 9 θ 3 3 tan x2 x 3 sec , dx C 9 3 tan 3 sec tan d , 26. 9 4x2 dx 1 2 1 2 9 2x 2 2 dx 2x 9 9 4x2 4x2 C C 28. 1 sin 2 cos2 d 1 2 1 1 2 cos2 2 cos 2 sin C d 1 2x 9 arcsin 2 3 x 2 1 arctan 2 u 2 cos , du 2 sin d 9 2x arcsin 4 3 360 Chapter 7 Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 30. (a) x4 x dx 64 tan3 64 sec4 sec3 d sec tan d 5 8 d, C C (b) x4 x dx 2 u4 4u2 du 20 32 sec2 3 sec3 2u3 2 3u 15 24 u2 4 x, dx x 15 C 8 C 64 sec3 15 24 x 4 (c) x4 4 tan2 , dx x 2 sec x dx u3 2 3x x 15 32 3x 2u du 8 tan sec2 4u1 2 du C 8 C (d) x4 x dx 2x 4 3 2x 4 3 24 x 15 v x x 32 2 3 4 x x C 3 2 dx 2u3 2 3u 15 24 u 4 x, du dx x 15 32 20 3x 32 4 4 15 8 x 32 52 C 32 3x 2 4 3 dx dv u x 4 x dx ⇒ ⇒ du 32. 2x3 2x3 5x2 x2 5x2 x2 4x x 4 4 2x 2x 3 3 4 x 4 x 3 x x 1 3 1 dx x2 3x 4 ln x 3 ln x 1 C 4x x A x 3A x 1 dx 34. 4x 3x 4x Let x Let x 2 12 2 B x 1 1 3B 2 3 4 3 dx 2 3 1 x 1 1 u C 1 2 2 1: 2 2: 6 4x 3x 3B ⇒ B 3A 3B ⇒ A 4 3 1 x 1 1 uu ln u 1 1 2 dx 12 dx 4 ln x 3 1 du u tan tan 1 1 2 3x 1 C 2 2 ln x 3 1 1 x 1 C 36. sec2 tan tan 1 d du ln u du ln C ln 1 cot C u uu tan , du 1 1 1 A u Au sec2 B u 1 d 1 Bu 1 Let u Let u 0: 1 1: 1 B A⇒ A R eview Exercises for Chapter 7 x 2 3x 2 4 3x 27 6x 8 27 2 x 1 ex 2 361 38. dx 2 3x 3x C C (Formula 21) 40. dx 1 1 dx 2 1 eu 1 u 2 12 x 2 ln 1 ln 1 eu ex 2 u C C x2 (Formula 84) 42. 3 2x 9x2 1 dx 3 2 3x 1 3x 2 1 C 3 dx u 3x 3 arcsec 3x 2 1 dx tan x 1 1 11 2 x 1 tan x (Formula 33) 44. 1 dx sin x C u x ln cos x (Formula 71) 46. tann x dx tann tann 1 n 1 2x sec2 x 1 dx tann tann 2 2 48. x dx u csc 2x dx x 2 csc 2x 1 dx 2x cot 2x C 2 x sec2 x dx 1 2 ln csc 2x 2x, du 1 dx 2x tann x x dx 50. u 3x3 x2 3x3 1 1 4x 12 4x x dx x, x Ax x2 Ax Ax3 B 1 u 4u3 u4 4u du 2u2 1, dx D 12 1 A Cx Cx 1, D B 4u4 4u3 4u2 du 4u du 4u5 5 4u3 3 C 4 1 15 x 32 3x 2 C 52. Cx x2 B x2 Bx2 C 0 x x2 1 D A B 3, B D 3x3 x2 0, A 0⇒D 4⇒C 4x dx 12 3 dx 1 x x2 1 2 x2 1 1 2 dx C 3 ln x2 2 54. sin cos 2 d sin2 1 2 sin cos sin 2 d cos2 1 cos 2 2 d C 1 2 2 cos 2 C 362 Chapter 7 4 x2 dx 2x Integration Techniques, L’ H ô pital ’s Rule, and Improper Integrals 2 cos 2 cos 4 sin sin d 56. y csc ln csc ln 2 d cos cos 4 2 x2 2 cos x2 C C 4 x 4 sin 1 cos x2 x 2 sin , dx 2 cos d, 58. y u 1 1 1 cos d d 1 cos 12 sin d 21 cos C cos , du x sin d 1 2 60. 0 x 2x 4 dx 2 ln x 2 ln 3 ln 9 8 x 4 2 ln 4 0.118 ln x ln 2 2 0 62. 0 xe3x dx e3x 3x 9 2 1 0 16 5e 9 1 224.238 3 64. 0 x 1 x dx 22 3 3 1 x 0 4 3 4 3 8 3 4 66. A 0 1 25 x2 1 x ln 10 x dx 5 5 4 0 1 1 ln 10 9 1 ln 9 10 0.220 68. By symmetry, y A x 1 17 5 x, y 3.4, 0 sin x sin 2 x lim x 4 0. 5 44 4 3.4 3 2 1 y 70. s 0 1 sin2 2x dx 3.82 (3.4, 0) x 1 3 4 5 −1 −2 −3 72. lim x →0 x →0 lim cos x 2 cos 2 x ln x 2 1 2 74. lim xe x→ x2 x→ lim x 2 ex x→ lim 1 2 2 xe x 0 76. y ln y x →1 1 x →1 lim ln x ln x 1 1 x1 1 1 x ln2 x 2 x →1 x →1 lim ln x 1 ln x 1 x →1 lim x →1 lim ln2 x x1 x lim 1 ln x x 1 x2 x →1 lim 2x ln x 0, y 1. 0 Since ln y ...
View Full Document

This note was uploaded on 05/18/2011 for the course MAC 2311 taught by Professor All during the Fall '08 term at University of Florida.

Ask a homework question - tutors are online