{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# EVNREV08 - 414 66 a2n Chapter 8 Infinite Series 68 Answers...

This preview shows pages 1–4. Sign up to view the full content.

68. Answers will vary. 70. 3 x 32 n 2 2 n x n n 64 n 16 n 2 3 x 32 n 2 x n n 32 n 16 n 2 3 x 32 2 2 x 2 2 64 2 2 3 x 3 3 64 3 16 2 4 x 4 4 64 4 16 2 . . . y 3 x 32 x 2 2 64 2 1 2 2 1 16 32 x 3 3 64 3 1 2 3 1 16 2 32 x 4 4 64 4 1 2 4 . . . 60 , v 0 64, k 1 16 , g 32 72. (a) From Exercise 8, you obtain (c) (d) The curves are nearly identical for Hence, the integrals nearly agree on that interval. 0 < x < 1. G x x 0 P 8 t dt F x x 0 ln t 2 1 t 2 dt P 8 1 x 2 2 x 4 3 x 6 4 x 8 5 P 1 x 2 n 0 1 n x 2 n 2 n 1 n 0 1 n x 2 n n 1 f x ln x 2 1 x 2 . x 0.25 0.50 0.75 1.00 1.50 2.00 0.2475 0.4810 0.6920 0.8776 1.1798 1.4096 0.2475 0.4810 0.6920 0.8805 5.3064 652.21 G x F x 74. Assume is rational. Let and form the following. Set a positive integer. But, a contradiction. 1 N 1 1 1 N 1 1 N 1 2 . . . 1 N 1 1 1 1 N 1 1 N , a N ! 1 N 1 ! 1 N 2 ! . . . 1 N 1 1 N 1 N 2 . . . < 1 N 1 1 N 1 2 . . . a N ! e 1 1 . . . 1 N ! , e 1 1 1 2! . . . 1 N ! 1 N 1 ! 1 N 2 ! . . . N > q e p q 66. (odd coefficients are zero) a 2 n 1 0 Review Exercises for Chapter 8 2. a n n n 2 1 4. 3.5, 3, . . . Matches (c) a n 4 n 2 : 6. . . . Matches (b) 6, 4, a n 6 2 3 n 1 : (b) 0 2 0.5 1.5 414 Chapter 8 Infinite Series

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
8. The sequence seems to diverge (oscillates). 1, 0, , 0, 1, 0, . . . 1 sin n 2 : 0 12 2 2 a n sin n 2 10. Converges lim n 1 n 0 12. Diverges lim n n ln n lim n 1 1 n 14. Converges; k 2 n lim n 1 1 2 n n lim k 1 1 k k 1 2 e 1 2 16. Let Assume b c and note that the terms converge as Hence converges. a n n . b n ln b c n ln c b n c n b n ln b b n c n c n ln c b n c n lim n ln y lim n 1 b n c n b n ln b c n ln c ln y ln b n c n n y b n c n 1 n 18. (a) (b) V 5 120,000 0.70 5 \$20,168.40 n 1, 2, 3, 4, 5 V n 120,000 0.70 n , k 5 10 15 20 25 0.3917 0.3228 0.3627 0.3344 0.3564 S k 20. (a) (c) The series converges by the Alternating Series Test. (b) 0 12 0 1 k 5 10 15 20 25 0.8333 0.9091 0.9375 0.9524 0.9615 S k 22. (a) (c) The series converges, by the limit comparison test with 1 n 2 . (b) 0 12 0 1 24. Diverges. Geometric series, r 1.82 > 1. 26. Diverges. n th Term Test, lim n a n 2 3 . 28. See Exercise 27. n 0 2 n 2 3 n 4 n 0 2 3 n 4 3 12 30. 1 1 2 3 1 1 2 1 2 1 3 1 3 1 4 . . . 3 1 2 n 0 2 3 n 1 n 1 n 2 n 0 2 3 n n 0 1 n 1 1 n 2 Review Exercises for Chapter 8 415
34. \$4,371,379.65 S 39 n 0 32,000 1.055 n 32,000 1 1.055 40 1 1.055 36. See Exercise 86 in Section 8.2. \$16,840.32 100 12 0.065 1 0.065 12 120 1 A P 12 r 1 r 12 12 t 1 38. Divergent p -series, p 3 4 < 1 n 1 1 4 n 3 n 1 1 n 3 4 40.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 9

EVNREV08 - 414 66 a2n Chapter 8 Infinite Series 68 Answers...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online