64 0 when 90 90 the pipe wrench is horizontal 2 0 0 0

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: v2 w3 u3 v1 w1 j u2w3 u1 v2 w2 u2 v1 w1 k w2 i u3v1 j u2v1 k u3w2 i u1w2 u2w1 k 59. u u u u1, u2, u3 ij u1 u 2 u1 u2 v u v v u2v3 u2v3 u2v3 u and u k u3 u3 u2u3 u3u2 i u1u3 u3u1 j u1u2 u2u1 k 0 61. u u u v v u3v2 i u3v2 u1 u3v2 v1 v v. u1v3 u3v1 u3v1 u3v1 j u1v3 u2 u1v3 v2 u1v2 u1v2 u1v2 u2v1 k u2v1 u3 u2v1 v3 0 0 Thus, u 63. u v u v sin If u and v are orthogonal, 2 and sin 1. Therefore, u v u v. Section 10.5 1. x (a) 1 3t, y z Lines and Planes in Space 2 t, z 2 5t (b) When t 0 we have P Q 10, 1, 17 . \ 1, 2, 2 . When t 3 we have PQ 9, 3, 15 \ The components of the vector and the coefficients of t are proportional since the line is parallel to PQ . x y (c) y 0 when t 2. Thus, x Point: 7, 0, 12 x z 0 when t 0 when t 1 . Point: 3 2 . Point: 5 7 and z 71 0, , 33 1 12 , ,0 55 12. 3. Point: (0, 0, 0 Direction vector: v (a) Parametric: x (b) Symmetric: x 1, 2, 3 t, y y 2 z 3 2t, z 3t Direction numbers: 1, 2, 3 5. Point: 2, 0, 3 2, 4, 2 2t, y y 4 z 4t, z 3 2 3 2t 2 2 2 2 Direction vector: v (a) Parametric: x (b) Symmetric: x Direction numbers: 2, 4, Section 10.5 Lines and Planes in Space 22 , ,1 33 17 i 3 11, 17t, y y 3 11 z 5 5 17 11 j 3 9 3 2 9 11t, z 2 3k 245 7. Point: 1, 0, 1 Direction vector: v Direction numbers: 3, (a) Parametric: x (b) Symmetric: x 3 1 1 3i 2j 2, 1 3t, y y 2 z 1 2t, z 1 1 t k 9. Points: 5, 3, 2, Direction vector: v Direction numbers: 17, (a) Parametric: x (b) Symmetric: x 9t 11. Points: 2, 3, 0 , 10, 8, 12 13. Point: 2, 3, 4 Direction vector: v Parametric: x 2, y k 3, z 4 t Direction numbers: 0, 0, 1 3 3 5 z 12 17. Li: v 3, 2, 4 6, 4, 6, 4, 8 6, 4, 6 8 6, 6, 6, 2, 5 on line 2, 5 on line 2, 5 not on line 5t, z 12t Direction vector: 8, 5, 12 Direction numbers: 8, 5, 12 (a) Parametric: x (b) Symmetric: x 8 2 2 8t, y y 15. Point: ( 2, 3, 1 Direction vector: v Parametric: x Symmetric: (a) On line (b) On line (c) Not on line y (d) Not on line 6 4 3 2 2 1 1 x 4 2 2 z 4i k 1 3, z 3 1 t 1 ,y 1 Direction numbers: 4, 0, L 2: v L 3: v L 4: v 4t, y not parallel to L1, L 2, nor L 3 Hence, L1 and L 2 are identical. L1 L 2 and...
View Full Document

Ask a homework question - tutors are online