# EVNREV12 - R eview Exercises for Minimize C x y 48 36 60x...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: R eview Exercises for Chapter 12 44. Minimize C x, y 48 36 60x 0.4y0.4 355 48x ⇒ ⇒ 36y subject to the constraint 100x0.6y0.4 y x x y y x 0.4 20,000. 48 60 36 40 y x 0.6 0.6 40x0.6y 0.6 0.4 48 60 40 36 8 x 9 y x 100x0.6y0.4 20,000 ⇒ x0.6 8 x 9 0.4 8 ⇒y 9 200 x y Therefore, C 209.65, 186.35 46. f x, y ax by, x, y > 0 y2 36 1 4x 200 8 9 0.4 8 200 9 8 9 0.4 209.65 186.35 \$16,771.94. x2 Constraint: 64 (a) Level curves of f x, y y Using y x 7, y 8 3y are lines of form (b) Level curves of f x, y y 4 x 9 4 x 9 4, y C. 4x 9y are lines of form 4 x 3 4 x 3 C. 12.3, you obtain 3, and f 7, 3 28 9 37. Using y x 7, you obtain 5.2, and f 4, 5.2 62.8. − 10 10 −8 Constraint is an ellipse. Review Exercises for Chapter 12 2. Yes, it is the graph of a function. x x y c=−1 3 c = −1 2 c=−2 2 c = −2 c= 2 1 4. f x, y ln x y 2 6. f x, y c= 1 2 The level curves are of the form c ec ln x y x y. −3 c= 3 2 c=1 c=0 3 The level curves are of the form c y 1 c c c x x c y x. c=1 −3 3 The level curves are hyperbolas. −2 −2 c= 2 c=2 3 The level curves are passing through the origin with slope 1 . 356 Chapter 12 Functions of Several Variables xy x2 y2 ± x. 8. g x, y z 60 y 1 x 10. f x, y, z Elliptic cone z 2 9x2 y2 9z2 0 12. x, y → 1, 1 lim Does not exist Continuous except when y 2 x 5 y 5 x 5 y 14. x, y → 0, 0 lim y xe y 1 x2 2 0 1 0 0 0 16. f x, y fx fy xy x yx x x2 x y 2 y y y 2 18. xy x y2 y 2 z z x z y ln x 2 x2 x2 2x y2 2y y2 y2 1 1 1 Continuous everywhere 20. w w x w y w z x2 12 x 2 x2 x2 y2 y2 y y2 z y2 z2 z2 12 22. f x, y, z 2x x2 x y2 z2 fx 1 1 1 1 2 1 x2 x2 x2 1 1 . At 2, 0, 0 , z x 0. x2 x2 x y2 y y2 z y2 y2 y2 z2 z2 32 2x z2 z2 fy fz z2 z2 z2 32 1 1 32 32 24. u x, t u x u t c sin akx cos kt akc cos akx cos kt kc sin akx sin kt 26. z z x x2 ln y 2x ln y Slope in x-direction. z y x2 1 y . At 2, 0, 0 , z y 4. Slope in y-direction. x x y x x x x x x y x y 2y y 2x y y 3 2 2 28. h x, y hx hy hxx hyy hxy hyx y 30. g x, y gx gy gxx 2 cos x sin x 2 sin x cos x 2y 2y 2y 2y 2y 2y 2y gyy gxy gyx 4 cos x 2 cos x 2 cos x 3 x y2 x 2y x y4 2y x y4 y y x x x x y y3 y y3 R eview Exercises for Chapter 12 32. z z x 2z x2 357 x3 3x2 6x 3xy 2 3y 2 34. z z x 2z e x sin y e x sin y e x sin y e x cos y e x sin y 2z 2z x2 z y 2z y2 2z x2 2z y2 z y 2z y2 6xy 6x 0. Therefore, Therefore, x2 y2 0. 36. z dz xy x2 y 2 z dx x x2 z dy y y2 y xy x x2 y 2 x2 y2 dx x2 y 2x x2 xy y y2 x2 y2 dy x2 y3 y2 32 dx x2 x3 y2 32 dy 38. From the accompanying figure we observe tan dh Letting x h or h x h dx x 100, dx x tan h h d tan dx x sec2 d. θ 1 ±, 2 11 , and d 60 ± 180 . x (Note that we express the measurement of the angle in radians.) The maximum error is approximately dh tan 11 60 h2 h2 h2 dr h2 cos t, y ux xt 1 sin t sin t 1 Substitution: u du dt sin2 t r2 r2 r2 h2 rh h2 dr dh rh r2 8 h2 dh 1 10 ± 29 8 ± ± 1 2 100 sec2 11 60 ± 180 ± 0.3247 ± 2.4814 ± 2.81 feet. 40. A dA r r2 r2 2r 2 r2 25 1 ± 8 29 43 8 29 42. u y2 x, x du dt sin t uy yt sin t 2y cos t Chain Rule: 2 sin t cos t 2 cos t cos t sin t sin t 1 2 cos t 2 sin t cos t 358 Chapter 12 xy ,x z Functions of Several Variables 44. w 2r w r t, y rt, z 2r wy yr t wz zr 46. 2xz z x z2 xz2 y sin z y cos z z x z x 0 0 z2 y cos z 0 sin z y cos z Chain Rule: wx xr y 2 z 2rt 2r t 4r2t x t z 2r 2r xy 2 z2 tt t 2 2r 2r t rt t2 2xz z y y cos z z y 2xz sin z z y 4rt2 t 3 2r t 2 wy yt x r z rt 2 2r t 2 2xz w t wx xt y 1 z 4r2t xy z 4r2t 4r2t 2r wz zt 1 xy z2 4r 3 Substitution: w w r w t 12 y 4 2r t rt 2r t 4rt2 t 3 2r t 2 rt2 t 2 2r2t 2r rt 2 t 4r 3 48. f x, y f f 1, 4 u Du f 1, 4 x2 1 yj 2 2j 25 i 5 u 5 j 5 45 5 25 5 25 5 50. w w w 1, 0, 1 u Duw 1, 0, 1 6x2 12x 12 i 1 v 3 3xy 3y i 3j 3 i 3 4y 2z 3x 8yz j 4y 2 k 2x i 2i 1 v 5 f 1, 4 3 j 3 u 3 k 3 w 1, 0, 1 43 3 0 53 52. z z z 2, 1 z 2, 1 x2 x x2 x 4j 4 y2 3 4y sin x 4y cos xi 2j y2 4 sin x 2y j y 2xy i y2 x2 x y j 2 54. z z z 2, 1 z 2, 1 x2y 2xy i 4i 42 x2j 4j 56. 4y sin x 58. F x, y, z F F 2, 3, 4 y2 2 yj 6j z2 2z k 8k 25 0 f x, y f x, y f 2 ,1 2 3j 4k Therefore, the equation of the tangent plane is 3y 3 y 3 4z 3 z 4 4 4 0 or 3y 4z 25, Normal vector: j and the equation of the normal line is x 2, . R eview Exercises for Chapter 12 60. F x, y, z F F 1, 2, 2 x2 2x i 2i y2 2y j 4j z2 9 2z k 4k 2i 2j 2k 0 62. F x, y, z G x, y, z F G F 4, 4, 9 F G y2 x 2y i i 8i i 8 1 j k j 0 1 k 1 0 i j 8k z y k 25 0 0 359 Therefore, the equation of the tangent plane is x x 1 2y 2y 2z 9, 2 2z 2 0 or and the equation of the normal line is x 1 1 y 2 2 z 2 2 . Therefore, the equation of the tangent line is x 1 4 y 1 cos x, sin y, 0, 1 y 0 0.1 0.1 0.3 0.5 z 3 4 z 9 . 8 1 0 0 64. (a) f x, y fx fy P1 x, y cos x sin x, cos y, 1 y sin y, f 0, 0 fx 0, 0 fy 0, 0 1 0 1 (b) fxx fyy fxy fxx 0, 0 fyy 0, 0 fxy 0, 0 y 12 2x P2 x, y (d) x 0 0 0.2 0.5 1 (c) If y 0, you obtain the 2nd degree Taylor polynomial for cos x. f x, y 1.0 1.0998 1.0799 1.1731 1.0197 P1 x, y 1.0 1.1 1.1 1.3 1.5 P2 x, y 1.0 1.1 1.095 1.175 1.0 (e) 2 z z 2 2 −2 −1 1 y 1 x −1 1 y −2 2 x 1 −1 1 −1 2 y 1 x The accuracy lessens as the distance from 0, 0 increases. 66. f x, y fx fy 4 3y fxx fyy fxy fxx fyy 2x2 4x 6x 6y 4 18 6 f xy 2 6xy 6y 18y 8 9y 2 0 0, x 8x 14 3y 4 3, 8⇒y x 4 4 18 6 2 36 > 0 Therefore, 4, 4 , 3 2 is a relative minimum. 360 68. z zx zy Chapter 12 50 x 50 50 zxx y 0.3x2 0.15y 2 Functions of Several Variables 0.1x3 20 20.6 20x 0, x 0, y 14 , 0 4.2 6 4.2 6 2 150 ± 10 ± 14 0.05y3 20.6y 125 Critical Points: 10, 14 , 10, 0.6x, zyy zxy 2 10, 14 , 10, 14 0.3y, zxy 6 2 At 10, 14 , zxx zyy At 10, 10, At At 14 , zxx zyy 14, 02 > 0, zxx < 0. 02 < 0. 02 < 0. 02 > 0, zxx < 0. 10, 14, 199.4 is a relative maximum. zxy zxy 349.4 is a saddle point. 2 10, 14 , zxx zyy 10, 14, 10, 10, 14, 14 , zxx zyy 4.2 6 4.2 200.6 is a saddle point. xxy 749.4 is a relative minimum. 70. The level curves indicate that there is a relative extremum at A, the center of the ellipse in the second quadrant, and that there is a saddle point at B, the origin. 0.25x12 5x1 0.15x22 72. Minimize C x1, x2 0.50x1 0.30x2 x1 x2 10 12 10x1 3x2 3x2 3x2 x1 x2 20 12x2 subject to the constraint x1 x2 1000. 1000 ⇒ 3x1 5x1 8x1 3000 20 3020 377.5 622.5 C 377.5, 622.5 104,997.50 74. Minimize the square of the distance: f x, y, z fx fy 2x 2y 2 2 x 2 x2 2 x2 2 2 y y2 2x y2 2y 2 2 x2 2 2 y2 2x3 2y3 0 2. 2xy2 2x2y 0 0 0.6894. 0x 0y Clearly x y and hence: 4x3 x 0.6894 2 2 Thus, distance 2 distance 2.08 2 0. Using a computer algebra system, x 0.6894 2 2 2 0.6894 2 2 4.3389. 76. (a) 25, 28 , 50, 38 , 75, 54 , 100, 75 , 125, 102 xi xi4 375, 382,421,875, 3,515,625b 34,375b 375b 0.0717, c yi xi yi 297, 26,900, xi2 xi2 yi 34,375, 2,760,000, xi3 3,515,625 382,421,875a 3,515,625a 34,375a a 0.0045, b 34,375c 375c 5c 2,760,000 26,900 297 0.0045x2 0.0717x 23.2914 23.2914, y (b) When x 80 km/hr, y 57.8 km. P roblem Solving for Chapter 12 361 78. Optimize f x, y 2 xy x2 x If x 2y 2 2 x2 x2y subject to the constraint x 4 xy ⇒ x 0 or x 4y 2y 2. 0, y 1. If x 41 3, 3 16 27 4y, then y 1 3, x 4 3. Maximum: f Minimum: f 0, 1 0 Problem Solving for Chapter 12 2. V 43 r 3 M r 2h 4 r2 1000 2 rh 43 r2 r3 Material V 1000 ⇒ h Hence, M 4 r2 4 r2 dM dr 8r r3 16 r 3 8 3 r3 Then, h 1000 8r 2000 r2 2000 750 43 r2 ⇒r 750 5 6 13 2r 2000 r 2000 r2 1000 82 r 3 16 r 3 43 r2 r3 0 . 0. The tank is a sphere of radius r 5 6 13 . 4. (a) As x → ± x→ ,f x gx 1 13 x3 x→ 1 lim 1 3→x and hence gx 0. −6 4 lim fx fx 6 (b) Let x0, x03 be a point on the graph of f. −4 The line through this point perpendicular to g is y x x0 3 x0 3 1. This line intersects g at the point 1 x 20 3 x03 1, 1 x 20 3 x03 1. The square of the distance between these two points is h x0 1 x 20 3 x03 1. 1 . Hence, the point on f farthest from g is 2 1 , 2 1 . 2 2 h is a maximum for x0 3 3 3 362 Chapter 12 H k 6xy V xyz Functions of Several Variables k 5xy 6xz xy 6yz 1000 . xy 1000 . x y 10 1 4 1 4 1 ellipse Ty 0⇒y 2y 1 21 y2 1 ,x 2 0⇒ ± − 1 2 1 2 6. Heat Loss 3xz 3xz 3yz 3yz 1000 ⇒ z 6k xy Hy 2x2 2x2 2x2 x2 18 y 1000 y Then H Setting Hx 8. (a) T x, y 0, you obtain x y2 y2 y y y 1 2 10 1 4 2 z 10. y x − 1 2 1 2 12 14 2 (b) On x2 Ty y2 1, T x, y 2y 4x 1 0, Ty y2 3 . 2 1 2 y 10 12 y2 y Inside: Tx T 0, T± 1 2 3 , 2 0, 39 minimum 4 1 2 49 maximum 4 r sin , z uy y r sin z uz z u r cos y u sin . y 2u 10. x u r cos , y ux x u x u r 2u 2 Similarly, u cos x r sin r cos 2u x 2 2u y 2u z x2 2 ux yx 2u xy uy y2 xz 2 uz yz r r u cos x u sin y u r cos x u r sin y x2 Similarly, r2 sin2 2 y2 2 r 2 cos2 2 2 2u r 2 sin cos xy u r2 u cos2 x2 u2 sin y2 2 2 u cos sin . xy Now observe that 2u r2 1u rr 1 r2 2u 2 2u 2u z2 x2 2u cos2 sin2 2 2u y2 2u sin2 cos2 2 2 2u cos sin xy 2u sin cos xy 1 r u cos x u sin y 1u sin ry 2u x2 2 y2 2 1u cos rx z2 u x2 u y2 u . z2 2u Thus, Laplaces equation in cylindrical coordinates, is r2 1u rr 1 r2 2u 2 2u z2 0. P roblem Solving for Chapter 12 dd dt 32 t2 t2 3 2t 4 2t 8 16 363 12. (a) d x2 y2 32 2t 2 1024 2t3 4 2t 16 32 2t 256t4 16t2 2 (b) 4096t2 16t (c) When t dd dt t2 2: (d) 62 82 38.16 ft sec d 2d dt2 32 t3 6 2t2 t2 4 2t 36t 16 32 12 32 0 32 12 20 when t 1.943 seconds. No. The projectile is at its maximum height when t 2. 0. 0, then fx x0, y0 0 and fy x0, y0 14. Given that f is a differentiable function such that f x0, y0 z z0 0 or z z0 f x0, y0 which is horizontal. Therefore, the tangent plane is 16. r, dr x y 5, y 18 5 ± 0.05, d ± 0.05 4 3 r cos r sin 5 cos 5 sin 18 4.924 0.868 2 1 π θ = 18 5 (r, θ ) = 5, ( π 18 ) 18 x 1 2 3 4 5 (a) dx should be more effected by changes in r. dx cos dr r sin 0.868 d d (b) dy should be more effected by changes in . dy sin dr 0.174 dr r cos d 4.924 d because 4.924 > 0.174. 0.985 dr dx is more effected by changes in r because 0.985 > 0.868. dy is more effected by 18. u t 2u 1 2 1 2 cos x sin x t t t cos x sin x cos x t t t t2 u x 2u 1 cos x 2 1 2 2u x2 Then, sin x 2u t sin x t t2 x2 . ...
View Full Document

## This note was uploaded on 05/18/2011 for the course MAC 2311 taught by Professor All during the Fall '08 term at University of Florida.

Ask a homework question - tutors are online