{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Problem Hint - If we graph y = √(x² 11x 36 it has a...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
If a point is on y =  x, then its coordinates are (x, x). To find the distance from (x, x) to (6,0),  use the distance formula: D =  [(x2 - x1) ²  + (y2 - y1) ² ] D =  [(x - 6) ²  + ( x - 0) ² D =  [x ²  - 12x + 36 + ( x) ² D =  [x ²  - 12x + 36 + x] D =  [x ²  - 11x + 36] This gives a way to find the distance to any point on y =  x. If we graph y = 
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: If we graph y = √(x² - 11x + 36), it has a minimum value when x = 5.5. Substituting 5.5 for x, the y value on y = √x is 2.345. So the closest point on the graph to the point (6,0) is (5.5, 2.345). Its distance from the y value of the minimum point on the graph of y = √(x² - 11x + 36) is about 2.398. I hope that helps!! :-)...
View Full Document

{[ snackBarMessage ]}