finalformulasheet

finalformulasheet - PHYS4125 Spring 2007 Final Exam...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: PHYS4125 Spring 2007 Final Exam (Schroeder Ch. 1-7) Formulas and Constants First and Second Law Equipartition Theorem: Uthermal = N f kBT 1st Law of Thermodynamics: U = Q + W V Compressive Work: W Adiabatic Processes: PV = constant; VTf/2 = constant; = (f+2) / f Ideal Gas Law: PV = nRT = NkBT N 3 2 Transport Mean Free Path: Scattering time: A RMS velocity: vrms = (3kBT/m)1/2 Viscosity: Fx 0 !) Diffusion, Fick's Law: & % t v rms du x dz $ # l 1 r 2 4 V N l Jx D dn dx " ! Heat Conduction: Q t kt A S Nk B ln 3Nh dT dx kt 1 CV lv 2 V Sackur-Tetrode Equation: V N 4 mU 2 ' (" Ideal Gas: 3N 2 1 V 2mU N ! h 3 N 3N 2 ! N 3N 2 Entropy of mixing: Entropy: S k B ln S k B ln n1 n2 ! n1 ! n 2 ! N ,V P Heat Capacity: C = Q/T or f P V dV Vo C Q T U T N ,V P 5 2 Statistics N ,n N! n! N n ! U ,N U ,V Engines and Refrigerators Definition of Coefficient of Performance: Joule-Thompson Throttling Process: H f Hi g f e d h COP benefit cost Qc W Qh Definition of Efficiency: e Qh Th Qc Qc Th Tc Tc benefit cost W Qh Qh Qc Th Definition of Chemical Potential: T S N y Thermodynamic Identity: dU T dS v T u x vt rs q Definition of Pressure: P T S V U V S ,N P dV dN U N Tc p i h w g processes. Third Law of Thermodynamics: T CV e fd c b a Entropy and heat: dS dQ T C V dT `Y X Definition of Temperature: W degrees of freedom and V TU or more generally 2 U for fN n pN systems with only quadratic Interactions T U S N ,V ; S CV T dT for quasi-static 0 0 0 as T 0 ;S T S TR F GE Q P I H C B q N 1 ! q! N 1 ! Stirling's Approximation: ln N ! Nln N 1 e n Gaussian Distribution: P N n 2 A D 8 7 Einstein Solid: N ,q 2 @ 1 Binomial Distribution: PN n N N n 2 2 2 3 N! pn r n! N n ! n and 9 6 5 4 where Npr S ,V Free Energy Enthalpy: H U PV Helmholtz Free Energy: F U TS Gibbs Free Energy: G U TS PV Thermodynamic Identities: dH TdS dF SdT PdV dN , dG Boltzmann Statistics Es kB T Boltzmann Factor: Partition Function: Average Values: e e Es Probability function: Z X ave P s s 1 e Z Es E s e s s Ideal Gas: quantum volume: Z total Z total Z 1 Z 2 Z 3 ... Z N (non-interacting distinguishable particles) 3 1 N Z (noninteracting indistinguishable particles) N! 1 vQ 2 h mkBT ! Free Energy and the Partition Function: F Partition Function of Composite Systems: k B T ln Z Maxwell Distribution Function: D v 4 v2 e m 2 kBT Equipartition (Again): if E q cq 2 then E ave 1 2kBT 3 2 X s P s 1 Z X s e Es E ave 1 Z mv 2 2 van der Waals Equation of State: P aN V2 2 V Nb Nk B T Clausius Clapeyron Relation for a Phase T T For fixed V, N: dF T 1 For fixed P, N: dS total T dG Chemical Potential: G N ; dS total 1 T ,P o T k B T ln P P dP Boundary: dT ~ T} | SdT s vr { z q p l o y !x k n m w j u vt i VdP dN , dN VdP o L T V Z N Chemical Potential: k B T ln Quantum Statistics Grand Partition FunctionGibbs Sum: s Bose-Einstein distribution: Fermi gases: Fermi energy: n BE F F 2h 2 2 12 e Energy Spectrum: u hc 8 3 3 e 1 Blackbody Radiation: Plank Distribution: n Pl "#! 1 F Chemical Potential: 2 kBT ... 1 hf 3 g V 3 2 1 Density of States: 8m 3 2 ! Heat Capacity: 2 CV Nk B T F 2 2 Degeneracy Pressure: P F 5V 2U 3V F Total energy: U 3 N 5 Fermi temperature: TF F kB 2 N 4 2N h2 8m 3N V Boltzmann occupation number: Fermi Dirac Distribution: n FD 1 e 1 1 e 1 n Boltzmann e 2 3 kBT 2 ... 3N ! Z Ţ entropy: S Nk B ln V Nv Q 5 2 partition function: Z 1 N! V Z internal vQ F internal T V Z internal Nv Q exp E s N s 0 2k B g e d c b N0 N N excited 1 T Tc f ` Y Bose-Einstein Condensation: kB T c 0.527 h 2 2 m 3 2 N V N for T a W CV X U low temperature: U V T high temperature: U 3Nk B T 3 4 Nk B T T3 D 4 4 5 3 12 5 Nk B 2 3 T TD Tc R Q T e P G Debye Model: U 9Nk B T 3 D D IH 4 T T x x 3 1 dx TD hc s 6N V S FD #EC 6 Phonons: Einstein Model CV 3Nk B e 1 2 A B@ kBT 2 15h c e 4 53 1 8 97 0 Stefan-Boltzmann: Power area 2 ( Entropy: S T 15 hc 32 k 4 V 3 B T 3 45 hc 5 ) & Heat Capacity: CV ' $ Total Energy: 15 hc 32 5 k 4 V B 3 % U V 8 5 kBT 3 4 T 3 2 5 kBT 3 2 4 T4 1 3 Reference Data: kB = 1.3807 x 10-23 J/K = 8.617 x 10-5 eV / K NA = 6.022 x 1023 R = 8.315 J/mol K h = 6.626 x 10-34 J s = 4.136 x 10-15 eV s c = 2.998 x 108 m/s G = 6.673 x 10-11 Nm2/kg2 e = 1.602 x 10-19 C me = 9.109 x 10-31 kg mp = 1.673 x 10-27 kg B = 9.2741x10-24 J/T Unit Conversions: 1atm = 1.013 bar = 1.013 x 105 Pa = 14.7 lb / in2 = 760 mm Hg (T in oC) = (T in K) 273.15 (T in oF) = 9/5 (T in oC) + 32 1 oR = 5/9 K 1 cal = 4.186 J 1 Btu = 1054 J 1 eV = 1.602x 10-19 J 1 u = 1.661 x 10-27 kg ...
View Full Document

This note was uploaded on 05/20/2011 for the course PHYS 4125 taught by Professor Staff during the Spring '07 term at LSU.

Ask a homework question - tutors are online