chapter10ProblemsAndSolutions

chapter10ProblemsAndSolutions - Chapter 10 Trigonometric...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 10 Trigonometric functions 10.1 Calculate the frst derivative For the Following Functions. (a) y = sin x 2 (b) y = sin 2 x (c) y = cot 2 3 x (d) y = sec( x - 3 x 2 ) (e) y = 2 x 3 tan x (F) y = x cos x (g) y = x cos x (h) y = e - sin 2 1 x (i) y = (2 tan3 x + 3 cos x ) 2 (j) y = cos(sin x ) + cos x sin x Detailed Solution: (a) dy dx = (cos x 2 ) · d dx ( x 2 ) = 2 x cos x 2 (b) dy dx = 2 sin x d dx (sin x ) = 2 sin x cos x = sin 2 x (c) dy dx = 2 cot 3 x d dx (cot 3 x ) = 2 cot 3 x ( - csc 2 3 x ) d dx ( 3 x ) = - 2 3 x - 2 3 (cot 3 x )(csc 2 3 x ) (d) dy dx = sec( x - 3 x 2 ) tan( x - 3 x 2 ) d dx ( x - 3 x 2 ) = (1 - 6 x ) sec( x - 3 x 2 ) tan( x - 3 x 2 ) (e) dy dx = 6 x 2 tan x + 2 x 3 sec 2 x v.2005.1 - September 4, 2009 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Math 102 Problems Chapter 10 (f) dy dx = 1 · cos x - x ( - sin x ) cos 2 x = cos x + x sin x cos 2 x (g) dy dx = 1 · cos x + x ( - sin x ) = cos x - x sin x (h) dy dx = e - sin 2 1 x d dx ( - sin 2 1 x ) = e - sin 2 1 x ( - 2 sin 1 x ) d dx (sin 1 x ) = e - sin 2 1 x ( - 2 sin 1 x )(cos 1 x )( d dx 1 x ) = 2 e - sin 2 1 x sin 1 x cos 1 x x 2 = sin 2 x x 2 e sin 2 1 x (i) dy dx = 2(2 tan3 x + 3 cos x ) d dx (2 tan3 x + 3 cos x ) = 2(2 tan3 x + 3 cos x )(2 sec 2 3 x · 3 - 3 sin x ) = 6(2 tan3 x + 3 cos x )(2 sec 2 3 x - sin x ) (j) dy dx = - sin(sin x ) · cos x +( - sin x ) · sin x +cos x · cos x = - sin(sin x ) · cos x +(cos 2 x - sin 2 x ) = - sin(sin x ) · cos x + cos 2 x 10.2 Take the derivative of the following functions. (a) f ( x ) = cos(ln( x 4 + 5 x 2 + 3)) (b) f ( x ) = sin( r cos 2 ( x ) + x 3 ) (c) f ( x ) = 2 x 3 + log 3 ( x ) (d) f ( x ) = ( x 2 e x + tan(3 x )) 4 (e) f ( x ) = x 2 r sin 3 ( x ) + cos 3 ( x ) Detailed Solution: (a) f p ( x ) = - (4 x 3 + 10 x ) sin(ln( x 4 + 5 x 2 + 3)) ( x 4 + 5 x 2 + 3) (b) f p ( x ) = (3 x 2 - 2 cos( x ) sin( x )) cos( r cos 2 ( x ) + x 3 ) (2 r cos 2 ( x ) + x 3 ) (c) f p ( x ) = 6 x 2 + 1 x ln(3) v.2005.1 - September 4, 2009 2
Background image of page 2
Math 102 Problems Chapter 10 (d) f p ( x ) = 4( x 2 e x + tan(3 x )) 3 (2 xe x + x 2 e x + 3 sec 2 (3 x )) (e) f p ( x ) = 2 x r sin 3 ( x ) + cos 3 ( x ) + 3 x 2 (sin 2 ( x ) cos( x ) - cos 2 ( x ) sin( x )) 2 R sin 3 ( x ) + cos 3 ( x ) 10.3 Convert the following expressions in radians to degrees: (a) π (b) 5 π/ 3 (c) 21 π/ 23 (d) 24 π Convert the following expressions in degrees to radians: (e) 100 o (f) 8 o (g) 450 o (h) 90 o Using a Pythagorean triangle, evaluate each of the following: (i) cos( π/ 3) (j) sin( π/ 4) (k) tan( π/ 6) Detailed Solution: (a) 180 o (b) 300 o (c) 164 . 35 o (d) 4320 o or equivalently, 0 o (e) 5 π/ 9 (f) 2 π/ 45 (g) 5 π/ 2 (h) π/ 2 (i) 1 / 2 (j) 1 / 2 = 2 / 2 (k) 1 / 3 = 3 / 3 10.4 Graph the following functions over the indicated ranges: (a) y = x sin( x ) for - 2 π < x < 2 π (b) y = e x cos( x ) for 0 < x < 4 π .
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/19/2011 for the course MATH 102 Math 102 taught by Professor Allard during the Winter '09 term at UBC.

Page1 / 22

chapter10ProblemsAndSolutions - Chapter 10 Trigonometric...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online