9_3 - Section 9.3: The Ellipse Instructor: Ms. Hoa Nguyen

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Section 9.3: The Ellipse Instructor: Ms. Hoa Nguyen (nguyen@scs.fsu.edu) 1 Ellipse Definition Definition of an Ellipse : Given any POSITIVE constant 2 a and two fixed points F 1 , F 2 ( foci ), the set of all points P such that d ( P, F 1 ) + d ( P, F 2 ) = 2 a is called an ellipse . Note: d ( A, B ) denotes the distance from A to B : d ( A, B ) = p ( x A - x B ) 2 + ( y A - y B ) 2 . The line containing the foci F 1 , F 2 is called the major axis . The midpoint of the line segment joining the foci is called the center of the ellipse. The line through the center and perpendicular to the major axis is called the minor axis . The 2 points where the ellipse intersects the major axis are the vertices, V 1 , V 2 of the ellipse. 2 Find the Equation of the Ellipse 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Case 1: Major axis is the x -axis, and the center is at the origin. An equation of the ellipse whose Major axis is the x -axis. The center is at the origin. The foci are
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/23/2011 for the course MAC 1147 taught by Professor Nuegyen during the Spring '11 term at FSU.

Page1 / 6

9_3 - Section 9.3: The Ellipse Instructor: Ms. Hoa Nguyen

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online