ex_sol(4)

ex_sol(4) - Section 11.2 Arithmetic Sequences Instructor Ms...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 11.2: Arithmetic Sequences Instructor: Ms. Hoa Nguyen (nguyenascsisuedu) 1 Arithmetic Sequences An arithmetic sequence {an} satisfies the following: 0 a1 . an = an—l + d where 0.1 is the first term, d is the common difference. 2 Find the n—th term of an arithmetic sequence Given the first term a1 and the common difference d: 01 a2=a1+d a3=a1+2d an=a1+(n—l)d » 7, . -: '7 So, the n—th term of an arithmetic sequence is: in” = a1 + (n — 1)d. ‘ Example 1: [11.2.2aPTIThc 5‘” term of an arithmetic sequence with first term a] = 1 and common differenced = ~§ is a‘ ._. ) c\ : ’ i o —1 \ ' " 3, 0 None of these i’, a, ' Q «a? I ‘ V (W‘B Cl 1 0 *" ‘ i‘ i <n=s> 1+ (aw-g) _ 4-512-). [11.2.1bP'1‘1The a“ term of an arithmetic sequence with first term at = Example 2: 2 and common difference at = 5% is ‘ 0 None of these —— :- g1...— » g» .ln 94,111“ ‘7“ ’ 0 it? — t" 0 ‘3‘“ t" Q'h 3:591. + ( V‘ " 0 J .63 1g ~ in ,, 3 a = 2 + (WM-lg) /// ‘ \ + 3) Example 3: an aL 73I37 . . . H II ’[11,.2.10PT]The 31“ term of the arithmetic sequence {1 3 l 0, - - -} is 0‘ : A. ‘o —10 = H 6}“ 03. ai + (NO <1 {1 (4 oz : aim 2 :32 n=?>\) ___ (bl-D(—3>‘ :02 ’0‘1 Example4: ’1 It ’- = — a [11.2.2bP'f‘]Gi§en an arithmetic sequence with an = 65, and a“ = 140, find the common difference. 0 H4 a : (n'bcl:01‘+‘Q-OC\:C 9‘5“, 2| _ H ,72 -- ~‘ 2 g (214;) : d1 '* («v-Dd 7 aiJerC‘flHO 1|) a. II 4.! \m H O3 ExampleS: (n:uc>) :_._> Q4G_Q2‘: [ll.2.2aPT]Given an arithmetic sequence with am 2 62, and (145 m 13?, find the first. term a1. "0 3’ CLZI : 01+ =- 62. g: (Me, = (1.1.4166? '3’} o 4 éaflfio = 25A: “+5 =7 (3:13:33 =5oizg2—2oa 2| , _ , 25 z 9 2—20 5 3 Summlng the terms of arithmetlc sequence 1 Let SkUc = 1, ...,n) be the sum of the first 19 terms of an arithmetic sequence {can}. Then 31 = (11 32 = a1+a2=a1+(a1+d)=2a1+d 3 53 = a1+ag+a3=a1+(a1+d)+(a1+2d) =3a1+xni S,1 = a1+az+a3+...+an=a1+(a1+d)+(a1+2d)+...+[a1+(n—1)d] = m1] + [1+ 2 + + (n-— 1)]d = 11111 + n(n2_1)d Note: S = na1+w:‘{712—_—11d = g(2a1+(n — 1)d) = nag—Ga So, E, = nal + ‘ a Examp e : J- a N f/ ‘9" d —; a -0“: 5 [11.2.2cP'flGNen the arithmetic sequence {—4,1,6,11,~-}, find the sum 3;”, _ “(n‘-\) 32:38? 390: “01* 01.4 333:3 ‘ (mm 2,390“) + 9033 5- ' 2 2 ~320 + 15900 = lb’hZO ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online