quiz3_v2

# quiz3_v2 - £9 0 S 2 Student’s Name Signature QUIZ 3...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: £9) : 0 S 2.. Student’s Name: Signature: QUIZ 3: Section 3.2 and Section 3.3 (Version 2) _ ' . 1%; bi mu) Problem 1: (5 points) Frame 1C3le I T [3.2.1bPT]Select the equation of the following graph ' has Jfo he oclc‘ . +V Adar“. (Power) .|. -Hw_rt }5 'd 'mga’riva Sign became, A 63”“ (moss) ) 1 ft Lube: . ) 3:-)(h “5°” “Ma's . (nose!) 8/ y=_(w+%5 (3in r h \50. mihehd rawh,l C y=(\$—%)6 ’-> {\L’i5¥'©\wiu. C y=-(z—%)6 I: y=(:c+§)5 Problem 2: (5 points) [3.3.3aPT]The graph of f = \$3“, + €02, a 95 0 C touches the m-axis at a: = 0 and crosses the m-axis at m m —a r: L/ c r: crosses the cur-axis at x z 0 and crosses the m-axis at :1: = —a crosses the m—axis at a: = 0 and touches the m-axis at a: m —-a. none of these touches the :r-axis at a: = 0 and touches the m~axis at a: = —a. Mi "Fl‘nd 'Hu HJLQ’ Zéros oi it _,,—’> X20 \) x+a:0 a xz-m —>NEXT PAGE Extra-credit problem: (1 point) ' [3.3.5aPT]Select the statement that is false for f (m) = — m2+4)(2;—5)2. I: f has one m—intercept. E f has degree 4. [3 The graph of f behaves like 3; m —:c4 for large E The y—intercept of graph is -100. h! f has a local minimum at a: = 5. )j ‘ I 48* deﬁemrd‘: 0i ‘nas om. x - insferuiiﬂ haul) zero /Crm|) md’ => \$6020 Y Xb+h:0 Luau“. Xz?ow => “+424 >0 \ 5 =0 =9 x:5'- v X¢+H>O , x v _> 3 L100) 0m. (real) zen: / x -‘mWEt‘ : ——) ‘h’Ue s+aJLemm¥ . ' w.) ALVQn muHAﬂ/{d‘} -———) r ‘ A) :iaorc c2 "5 ﬂak? 0m. )00 ”‘ Ha §¥Q+QW¥€ a “HAL g— "it"qu oi 3S '- v, -.in'\kru1'>5r_ A) M P°in¥ WLW X=OI j: — 100. X SuLs’rHuh x=O m’to 3gb) “’0 5“ {fr i(b):-|002 go) 2 _ (on) (0—5)” = — s u - w“ = —‘* \$25 : ‘ _\OO : J a Hat AaBltmmxr is "rue. ((—1 Ma; Q. .‘OCGL M\NMUM as} X: 5%. _____________—————-b X: b— )15 (NJ) Zero if, i wiflﬂ, WWW-(1‘5" 2‘ hucjub x-ax\'\$ dx: _ 3 V F r 3 \ L L .}Fs/ ML Q 6:) >X \ >x o 9 O 5 \OQQL MiMMUm @ iijum 1S Hm rin‘ em. gar iv) mar x: LaVs 'ck at IDM‘VSTXOW 5 ,‘HLM ComPo-h, 10%).. I; m) >0 Jer‘ \$30” A a; m “jm m 3 OHM) iigUre éL is W. n‘ijr om. ‘Htr't; x: 5 \S ME), zero) of}: can [ﬁnk an} ’ X0 ° SWE Xe: O I‘H‘m’ U0): (°>:"(br (-S'Z’ j i i \z—h? 2340 __) i ha; a, \ocaL Maximum, 0} x15 .9 ﬁfglu‘s+q+zmr Fiﬁurz 1 t \_ ...
View Full Document

## This note was uploaded on 05/23/2011 for the course MAC 1147 taught by Professor Nuegyen during the Spring '11 term at FSU.

Ask a homework question - tutors are online