HW_sol(11)

HW_sol(11) - Sections 4.2 (Due: Tuesday, 10/23)...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Sections 4.2 (Due: Tuesday, 10/23) Description: This homework will help you learn how to apply the Rolle’s Theorem, The Mean Value Theorem and how to obtain information about a function from its derivative. Show all work to get full credit. 1) Find the number c that satisfies the conclusion of Rolle‘s Theorem. (Give your answer correct to two decimal places.) 1r 3n f(x)=cos 5x,[fé’fi (w c= —— :3 O.G$ 5 2) Find the number 0 that satisfies the conclusion of Rolle's Theorem. flmv>=v59§w [0,9 ‘_ C: q =—' 2025 3) Find the number 0 that satisfies the conclusion of the Mean Value Theorem. f(x) = 4x2 + 2x + 3, {-1, 1] c=l C) 4) Find the number 0 that satisfies the conclusion of the Mean Value Theorem. (Give your answer correct to two decimal places.) f(x) =x3 +x—1,[O,7] Flt/([5 24.01) 5) Find the number c that satisfies the conclusion of the Mean Value Theorem. (Give your answer correct to two decimal places.) 52': i—sx’fflGJS—q «,3 0.6L} — 5 - 9.5 6) Find the number 0 that sa isfies the conclusion of the Mean Value Theorem. (Give your answer correct to two decimal places.) (I: f(m)=x+2 [1,4] 0: “2+ .8 21:2.” 7 If f2 = 5 and f'(x) 2 1 for 2 s x s 7, how small can f(7) possibly be? i0?) 2 lo a Symlht Mimi ,l’rG): i0 8 Su ose that 4 S f' x S 5 for all values of x. Complete the inequality below. I 42. sf(4)-f(1)si 45 I} éC‘Zu‘) 2008(5'%):Qos £7-70 my; t g? .> W Rona;me . $070) 3' Cos(5. 4%):mg):oi) ( a) 5’(a)=—5sm(5a) : 0 , “him A mg; [mamfi ésinaog) .819 , % ‘97)(565 Z 0 i. 581:5“, _ 9" _ 0 (:mewm mo [’T'fi:2‘le(.j_,31 A ’ q C05 *2)? r i , 7'01 '°" _ __ _ K , '17‘Q WI 7 71"}- 7'} jr 1' =>W3c La. c= 4am? ekm\cv=-,+g}e<ofi) ergaofi) : ;) 3611,4- Izzlgogficz: 3321-4: 333:), i _ _.L|3 fix) = Yéfi [42”] / _ I .7 6 I ._ 1/3 )( >: (K) (x+2)— X11951): x+Z—’_’X : Z. > ; 3/5 l i X (x+2)l (X+Z)L (x+Z)L ” £7(c ; Eéfjf ' 59(6); :3: [fl/3 : é: _ 'l 2 a =>I€=@r:<)‘ a cow i” “6:155 .. 9 Cad“ " M :7 C: "3“:3fiA—9Choou (M9 3r 4(2): 5; 4’“) 21 407?3~<*~‘3r—> [2,43 ¥)():§(7) _ t M E beau“ c:—-2~5J2_,¢U2Lf) 7 ~ 9 #’(X)Z_’L I ,a 9(7>—5- 'Hm 5mQ|LA+VGLuL $095 .10. g a si’ws 51> ._ <i<u>4u)s—- chow @191:le ‘A i, )=§(tl>"”%l> ____9 Mg H‘l)‘§'{’> é g \Deccmy. “S47(X)\<b_ 3 , ...
View Full Document

This note was uploaded on 05/23/2011 for the course MAC 2311 taught by Professor Noohi during the Fall '08 term at FSU.

Ask a homework question - tutors are online