FinalProjectSlides - ContentBasedImageRetrieval:...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
05/22/11 Content-Based Image Retrieval: Feature Extraction Algorithms EE-381K-14: Multi-Dimensional Digital Signal Processing BY: Michele Saad  EMAIL: [email protected] PROF: Brian L. Evans
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
05/22/11 Motivation • Increased use of image and video – Education – Entertainment – Commercial purpose • Need for  efficient and effective browsing  into image  databases • Need for  reduction of semantic gap  between low- level features and high-level user semantics
Background image of page 2
05/22/11 Objectives and Contributions Objective:   – Implementation and comparison of texture and color  feature extraction algorithms Contribution: – An up-to-date comparison of state-of-the-art texture  and color feature extraction methods
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
1 05/22/11
Background image of page 4
05/22/11 Color Features Color Feature Pros Cons Color  Space Conventional  Color histogram •Fast computation •Simple •High dimensionality •No color similarity •No spatial info   HSV
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/22/2011 for the course COMP 207 taught by Professor Zhangli during the Spring '11 term at University of Liverpool.

Page1 / 14

FinalProjectSlides - ContentBasedImageRetrieval:...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online