12_Citric+Acid+Cycle_2010_no+turning+point

12_Citric+Acid+Cycle_2010_no+turning+point - 12....

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
12.1 Introduction – the three stages of aerobic respiration Production of acetyl-CoA  Glycolysis (covered in topic 10) Pyruvate   Acetyl-CoA (today) The Citric Acid Cycle (today) Mitochondrial electron transport chain (oxidative phosphorylation) 12.2 Pyruvate oxidation and formation of acetyl-CoA 12.3 Reactions of the citric acid cycle 12.4 Stoichiometry and energetics of citric acid cycle 12.5 Citric acid cycle as a pool of metabolic intermediates 12.6 Regulation of pyruvate dehydrogenase and citric acid cycle 12.7 Metabolic significance of the irreversible nature of the  citric acid cycle
Background image of page 2
Respiration Process in which chemical bonds of energy-rich molecules (glucose, amino  acids, fatty acids) are converted into energy usable forms for life processes  (ATP) Anaerobic respiration Involves glycolysis and fermentation to lactate or ethanol Very important energy-yielding catabolic pathway Yields energy under anaerobic conditions BUT – energy yield is quite small from anaerobic respiration How many ATP molecules are produced during glycolysis?  2 Aerobic respiration  Complete oxidation of glucose to CO 2  and H 2 O Under aerobic conditions, end product of glycolytic pathway is catabolised  further to acetyl-CoA and then to CO 2  and H 2 O Yields a LOT more energy – how many ATP molecules?   30-32
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Aerobic Respiration Requires O 2 : terminal electron  acceptor is O 2  (as opposed to an  organic compound in anaerobic  respiration) Occurs in the mitochondria Pyruvate completely oxidised to CO 2   and H 2 O Completely oxidises glucoses and  generates a large amounts of ATP  (30-32 / glucose)
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Aerobic respiration 3 Major steps: 1. Formation of acetyl-CoA 2. The citric acid cycle 3. Electron transport chain and  oxidative phosphorylation (Topic  13)
Background image of page 6
Yes No 0% 0% 1. Yes 2. No
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Aerobic Respiration – Stage 1 Acetyl-CoA can be formed from Glucose (Topic 12) Fatty acids (Topic 14) Amino acids (Topic 15) Glucose Pyruvate Acetyl-CoA Glycolysis – Topic 10 This topic
Background image of page 8
Link-reaction: conversion of pyruvate to acetyl-CoA Irreversible Takes place in mitochondrial matrix (once pyruvate crosses both  mitochondrial membranes) Catalysed by pyruvate dehydrogenase complex (see next slide)
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Pyruvate Dehydrogenase Complex Composed of 3 distinct enzymes to form a multi-enzyme  complex E1 – pyruvate dehydrogenase (thiamine pyrophosphate attached) E2 – dihydrolipoyl transferase (lipoic acid attached) E3 – dihyrdrolipoyl dehydrogenase (FAD attached) 5 cofactors! Coenzyme A (derived vit B5)
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/24/2011 for the course CHEM 104 taught by Professor Igor during the Three '11 term at Charles Sturt University.

Page1 / 51

12_Citric+Acid+Cycle_2010_no+turning+point - 12....

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online